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About This Manual

Objective

This manual introduces the array-processing features of CM Fortran in a task-oriented way. It is a
companion volume to the CM Fortran Reference Manual.

Intended Audience

The reader of this manual is assumed to have a working knowledge of Fortran 77 (either VAX
FORTRAN or Sun FORTRAN). No prior knowledge of CM Fortran or of the Connection Machine
system is required.

Revision Information

This manual supersedes Getting Started in CM Fortran, Version 5.2-0.6, February 1990. A
condensed version of this Programming Guide is now available as Getting Started in CM Fortran,
January 1991.

Organization of This Manual

Part I Getting Started

A gentle introduction to the data parallel programming model, the basics of the
Connection Machine system, and a simple program in CM Fortran.

Part II Programming in CM Fortran

The major array-processing features that CM Fortran adds to Fortran 77.

Part 1I Optimization

The techniques of optimizing CM Fortran programs by controlling the layout of
arrays in the CM's distributed memory.

Appendix A Sample Programs

Several common problems solved in both Fortran 77 and CM Fortran.
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Related Documents

* Getting Started in CM Fortran. Introduces the CM Fortran language. It is a condensed

version of the present manual.

* CMFortran Reference Manual. Defines the CM Fortran language, specifying the complete

syntax and semantics of every feature and compiler directive.

* CMFortran User ' Guide. Describes the CM Fortran compiler command and switches, the

CM Fortran library of utility procedures, and various program development tools.

The CM libraries-scientific software, parallel I/O, visualization, and Paris (the CM Paral-

lel Instruction Set)-are described in separate volumes.

* CM Fortran Optimization Notes. A pair of manuals that provide hints for getting best
performance from CM Fortran programs. The two Optimization Notes manuals describe,

respectively, the two execution models for which CM Fortran programs can be compiled.

* CM Fortran Release Notes. Summarizes the new features in the current release and lists
restrictions and implementation errors.

Version 1.0, January 1991

CMFortran Programming Guidex



Customer Support
_ fi5 j~~~~i~~~~~'.s. c s ~ 0 scisff.c u~s fRsyic~ MsfW~:s~~ s;:S"cc

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and

correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond

to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street

Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telephone:

customer-support@think.com

ames!think! customer-support

(617) 234-4000

(617) 876-1111

xi
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Chapter 1

What Is CM Fortran?

The CM Fortran language is an implementation of Fortran 77 supplemented with array-
processing extensions from the ANSI and ISO (draft) standard Fortran 90. These
array-processing features map naturally onto the data parallel architecture of the Connec-
tion Machine (CM) system, which is designed for computations on large data sets. CM
Fortran thus combines:

* The familiarity of Fortran 77, often the language of choice for scientific computing

· The expressive power of Fortran 90, which offers a rich selection of operations and
intrinsic functions for manipulating arrays

· The computational power of the CM system, which brings thousands of processors
to bear on large arrays, processing all the elements in unison

1.1 Array Processing in CM Fortran

The essence of the Fortran 90 array-processing features is that they treat arrays as first-
class objects. An array object can be referenced by name in an expression or passed as an
argument to an intrinsic function, and the operation is performed on every element of the
array.

1.1.1 Compared with Fortran 77

In Fortran 77, operations are defined only on individual scalars. Operating on an array re-
quires stepping through its elements, explicitly performing the operation on each one. With

Version 1.0, January 1991 3
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Fortran 90 constructions, it is not necessary to reference array elements separately by

means of subscripts, and it is not necessary to write DO loops or other such control con-

structs to have the operation repeated for each element. It is sufficient simply to name the

array as an operand or argument.

1.1.2 Example in Fortran 77 and CM Fortran

Consider a 4-element array A, initialized to [ 1, 2, 3, 4 ]:

INTEGER A(4)

DATA A / 1, 2, 3, 4 /

Suppose you want to increment each of the values by 1, so that A contains [2,3,4,5].

The familiar method in Fortran 77 is to reference the elements by subscript and, through

a looping construct, explicitly increment each value:

DO 30 I=1,4

A(I) = A(I) + 1 '
30 CONTINUE

If the array is multidimensional, then the control sequence is nested to operate on all the
elements:

INTEGER A(4,4)

DO 30 I=1,4

DO 40 J=1,4

A(I,J) = A(I,J) + 1

40 CONTINUE

30 CONTINUE

CM Fortran dispenses with the subscript references and the DO loops. Both the above oper-

ations are expressed simply as:

A=A+ 1

These code fragments perform the same set of operations, but their semantics are slightly
different. The Fortran 77 statements are evaluated in the order specified by the nested

[i
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loops, whereas the Fortran 90 construction allows the elements of A to be evaluated in any

order, including simultaneously.

A Fortran 90 array reference can be used for any size or shape array and for any array

operation defined in CM Fortran. The array could, for example, be 4-dimensional, and the

operation could be any Fortran operator or intrinsic function:

REAL B( 512, 64, 8, 4 )

B = 8.0 ! Set all 1,048,516 elements to 8.0.

B = B * 2.0 ! All 1,048,516 elements contain 16.0.

B = SQRT( B ) ! All 1,048,516 elements contain 4.0.

NOTE

The simple array reference A or B is the default form of a Fortran
90 triplet subscript. A triplet subscript, such as A (1: 4:1), con-
tains the information that Fortran 77 expresses in the control

specification of a DO loop: the first and last elements and the incre-
ment.

Fortran 90 thus replaces DO loops with a form of array reference
that indicates all the elements of interest. See Section 4.2 for more

information about Fortran 90 array references.

This manual uses the term array object to mean any array that is referenced in the Fortran

90 manner. That is, an array object is one for which the array reference contains an explicit

or implicit triplet subscript that indicates all the elements that are to be operated upon.

1.1.3 Compared with Fortran 90

CM Fortran implements the array-processing features of Fortran 90. Features proposed for

Fortran 90 in the major areas other than array processing-such as pointers, structures,

modules, and precision control-are not part of CM Fortran.

Version 1.0, January 1991
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1.2 Data Parallel Processing

Fortran 90 array processing is reflected in the hardware of the data parallel Connection

Machine (CM) system. From the software perspective, an array object refers to all the data
elements of the array simultaneously. From the hardware perspective, the separate opera-
tions on the array's elements are all performed simultaneously.

1.2.1 Compared with Serial Processing

A serial implementation of Fortran 90 would have the syntactical convenience of referenc-

ing arrays as objects, but the compiler would necessarily generate serial loops. However,
if the operations on individual data elements are independent of one another, there is no
inherent need for them to be sequential. A computer that can store each data element in the
memory of a separate processor is free to operate on all the data elements at the same time.
For example, given a 40 x 40 x 40 array A, consider the statement:

A = SQRT (A)/2

To execute this statement, a serial computer would need to perform 128,000 arithmetic
computations. A data parallel computer, in contrast, provides a processor for each of the
64,000 data elements, and each processor needs to perform only two computations.

1.2.2 In the CM System

The CM system consists of a collection of simple processors, each with its own memory,
all acting under the direction of a conventional processor called the front end. Arrays used
in Fortran 90 constructions are stored in CM memory, one element per processor. Since

many data sets are larger than even the largest CM, the system uses a virtual processing
mechanism, whereby each physical processor simulates some number of virtual processors
by subdividing its memory, to ensure that a processor is assigned to each array element.

When the front-end computer executes a CM Fortran program, it performs serial opera-
tions on scalar data stored in its own memory, but sends any instructions for array
operations to the CM. When the CM receives an instruction, each (virtual) processor ex-
ecutes it on its own data point. Other instructions transfer data between the front end and
the CM or between the CM and a peripheral storage device such as the DataVault mass
storage system. 

i ,
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Figure 1. Interactions between front end and CM

Because CM memory is distributed among the processors, the system provides several

mechanisms by which processors can access each other's memories. Interprocessor com-

munication is transparent to the user, but many CM Fortran operations map onto
communication instructions in a straightforward way. The three communication mecha-

nisms are:

* Nearest-neighbor, or NEWS, communication, whereby each processor gets a value

from its neighbor on an n-dimensional grid, all at the same time

* General-purpose, or router, communication, whereby each processor gets a value

from any arbitrary processor, all at the same time

* Global communication, which includes cumulative computations along grid axes

and reduction of an array to a single value

Notice that because there is only one instruction stream, the CM processors are naturally

synchronized. Race conditions cannot develop because no processor proceeds to the next
instruction until all have finished the current instruction. Processors for which the instruc-

tion is not relevant (because they have been used in a conditional construction, for instance)

are deactivated; they do nothing until a later instruction reactivates them.

The array-processing constructions that CM Fortran has adopted from Fortran 90 map nat-

urally onto this data parallel architecture. Although this manual does not focus on
implementation issues, some of the basic programming practices it discusses follow clearly
from even this brief introduction to CM architecture.

Version 1.0, January 1991
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1.3 Memory Management in CM Fortran

CM Fortran is a superset of Fortran 77. The differences between the two languages reflect
a basic fact of CM architecture: a CM Fortran program is directing two CM system compo-
nents with different memory organizations. An array can have its home either in the
centralized memory of the front end or in the distributed memory of the CM.

No new data structure is needed to express parallelism, and the programmer need not take
any special action to invoke the CM. The CM Fortran compiler allocates arrays in the
memory of one machine or the other depending on how the arrays are used. In brief:

* Arrays that are used only in Fortran 77 constructions reside on the front end. The
front end stores and processes all scalar data, including subscripted arrays.

* Arrays that are used in Fortran 90 constructions reside on the CM. The CM stores
and processes all arrays that are referenced as array objects. (Arrays that are refer-
enced in both ways reside on the CM. See Section 2.3.3.)

Figure 2. Division of labor between front end and CM

$ ,,

Version 1.0, January 1991
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The CM Fortran programmer need not, of course, specify where data is stored (although
compiler directives and switches do provide this capability). However, even the beginning
user needs to understand the division of labor between the two machines so as to avoid
trying to perform a CM (parallel) operation on front-end (scalar) data, and vice versa. Such

pitfalls are pointed out throughout this manual.

Because of the CM's distributed memory, not all of Fortran 77 can be used with CM array
objects. Most Fortran 77 features are extended for use with array objects, as the + and =
operators are used above in the array operation A = A + 1. However, certain features

with storage-order dependencies-most notably, the EQUIVALENCE statement-are not
supported for CM data.

1.4 The Features of CM Fortran

The array-processing features that CM Fortran draws from Fortran 90 include:

* Expanded semantics for Fortran 77 operators and intrinsic functions, such that they
can take an array object and operate on its elements

* Array sections and vector-valued subscripts, new syntax for selecting subarrays
from array objects

• The WHERE statement and construct, which operate conditionally on an array's ele-
ments depending on the elements' values

* New intrinsic functions for permuting and transforming arrays, as well as for con-

structing arrays and inquiring about their properties

* Attributed type declarations, an alternative to Fortran 77 type declarations and the
DIMENSION statement for declaring arrays

CM Fortran also includes some Fortran 90 features that are not specifically related to array
processing, but are commonly found in implementations of Fortran 77. Examples of these
are the control-flow statements CASE, DO TIMES, DO WHILE, and END DO. The CMFortran

Reference Manual gives a complete description of all CM Fortran features.

Version 1.0, January 1991
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Finally, CM Fortran includes some non-standard features that are particularly useful for
data parallel programming on the Connection Machine system:

* The FoRALL statement, a powerful facility for initializing arrays, for selecting sub-
arrays, and for specifying data movement in terms of array indices.

* Compiler directives, several of which control the layout of arrays in Connection
Machine memory. Layout can have major effects on program performance.

* Utility routines library, which serves a number of purposes:

· Providing language-level capabilities that are not yet implemented in CM
Fortran, such as generating random numbers in an array

* Providing CM system services, such as transferring arrays between front-
end memory and CM memory or accessing the CM (parallel) file system
on a peripheral storage device

* Improving performance in cases where the CM Fortran compiler has a
temporary "blind spot" and cannot translate language syntax into the opti-
mal parallel instruction

1.5 CM Fortran Documentation

* CM Fortran Reference Manual defines the language and the compiler directives.

* CMFortran User's Guide describes the compiler and its switches, some develop-
ment utilities such as the timer and debugger, and the library of utility routines.

* CMFortran Optimization Notes describe the mapping of CM arrays onto the un-
derlying machine and provide some hints about efficient programming practices.

NOTE

Please see the current CMFortran Release Notes for any restric-
tions or bugs in the features described in this manual.

Version 1.0, January 1991
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Chapter 2

Basic Operations

This chapter examines some simple CM Fortran code to illustrate the operations that are
fundamental to any array-processing program:

* Declaring arrays

* Initializing or otherwise moving data into arrays

* Computations on arrays

· Retrieving the results of computations

* Compiling and executing a program

For simplicity, this chapter focuses on elemental operations on whole arrays.

* An elemental operation affects the elements of an array as if it had been applied
separately to each element (in undefined order). Such an operation occurs within
each CM processor independently of the others. Operations that specify data
movement between processors are deferred to Chapter 6.

* A whole array is an array object specified simply by name, which indicates all the
elements of the array. Such a reference has an implicit triplet subscript that corre-
sponds to the declared bounds of the array. Chapter 4 shows operations that apply
only to selected elements of an array.

2.1 A Simple Program

The following program shows all the basic operations noted above. It declares and initial-
izes two vectors, computes the sum of the squares of their corresponding elements, and

Version 1.0, January 1991 11
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prints out the result vector and the result vector's highest value. The remainder of this chap-
ter steps through this program, pointing out the basic features of CM Fortran.

PROGRAM SIMPLE

IMPLICIT NONE

INTEGER A, B, C, N, MAXVALUE

PARAMETER (N=5)

DIMENSION A(N), B(N), C(N)

DATA A /
B=2

1,2,3,4,5 /
! a CM array assignment

C = A**2 + B**2

PRINT *,
PRINT *,

! array-valued expressions

'Array C contains:'
C ! output of CM data

MAXVALUE = MAXVAL( C ) ! a CMF intrinsic function

PRINT *, 'The largest value in C is ', MAXVALUE

STOP

END

2.2 Declaring and Initializing Arrays

CM Fortran supports all standard Fortran 77 syntax for declaring and initializing both sca-
lar values and arrays.

Program simple. f cm uses Fortran 77 type specification statements, as well as the state-
ments DIMENSION, PARAMETER, and DATA, to declare and initialize the scalar values N and
MAXVALUE and the array x Since CM Fortran supports standard Fortran I/O features on the
UNIX file system, programs can also use the READ statement for initialization. (To read data
from the CM file system, see the volume Connection Machine /0 Programming in the CM
documentation set.)

Oi v
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CM Fortran supports seven data types:

CHARACTER REAL

LOGICAL DOUBLE PRECISION (real)

INTEGER COMPLEX

DOUBLE COMPLEX (double-precision complex)

The IMPLICIT statement allows the programmer to override Fortran's implicit typing
rules with specified typing rules, each of which associates one or more letters with a data
type. The form used in program simple, IMPLICIT NONE, means that all identifiers must
be declared. This form is useful for catching misspellings at compile type.

Arrays can be of any type, and from one to seven dimensions. However, character arrays
are not supported on the CM. That is, an array declared as type character is always stored
in the memory of the front-end computer, and its elements are processed serially in the
Fortran 77 manner. All other arrays can be stored and processed either on the front end or
on the CM depending on the use the program makes of them.

As an alternative to the Fortran 77 syntax shown, CM Fortran also offers the more econom-
ical Fortran 90 syntax. The new declaration syntax can specify type, dimensionality, and
initial values all in a single statement (see Chapter 3).

2.3 Array Operations

An array operation is any reference to an array object (that is, any reference using Fortran
90 syntax) in an expression, assignment, or intrinsic function call. Fortran 90 and CM For-
tran extend the semantics of Fortran 77 such that operators and intrinsic functions can take
array objects and operate on their elements. CM Fortran also adds a number of Fortran 90
intrinsic functions that manipulate or transform array objects.

The various forms of array operations are all illustrated in program simple:

B = 2 ! a CM array assignment
C = A**2 + B**2 ! array-valued expressions
PRINT *, C ! output of CM data
MAXVALUE = MAXVAL( C ) ! a CMF intrinsic function

Version 1.0, January 1991
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Notice the use of the Fortran 77 operators +, =, and **. These features have been extended
to operate on all the elements of an array object. Similarly, array objects can be passed as
arguments to all the Fortran 77 intrinsic numeric and mathematical functions, such as Ass,
MAX, and SIN. However, because character arrays are not supported on the CM, the intrin-
sic character functions, such as CHAR and INDEX, cannot take array objects as arguments.

The function MAXVAL is an example of the array-processing intrinsic functions that CM
Fortran adds to Fortran 77. The array argument(s) to these functions are taken to be CM
array objects.

2.3.1 Conformable Arrays

When an expression or assignment involves two or more arrays, the arrays must be con-
formable, that is, they must be of the same size and shape. Each set of corresponding
elements of conformable arrays resides in the memory of a single CM processor, which
performs the computation on that set of elements.

For each group of conformable arrays, the system configures a set of virtual processors into
a logical grid that reflects the shape of the arrays. Although arrays of many different sizes
and shapes can coexist in CM memory, conformable whole arrays are always allocated in
the same set of processors in the same order.

A

B

C

1 2 3 4 5 6

i: 2 1 3 1 4 1 5 16 l

I 2 3 2 3 j 2

6 6 8 8::.':

....... 61 l8 

Figure 3. An elemental vector addition, c = A + B, with one processor highlighted

01,,
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As a result, elemental operations on conformable arrays are extremely efficient. Such oper-
ations need not move data into the appropriate processors: it is already there. Each
processor need only index within its own memory to locate the operands. For example,
Figure 3 highlights the memory of a single processor as the CM adds the corresponding
elements of two vectors, A and B, and places the results in a third vector, c.

The comparable operation on matrices is shown in Figure 4, assuming three 6 x 4 arrays.

As in the figure above, a set of virtual processors is configured to reflect the shape of the
arrays, and each processor has a set of corresponding elements within its own memory.
Each processor does exactly the same operation it would do for a vector addition; the dif-
ference is that the processors are configured differently.

Figure 4. An elemental matrix addition, c = A + B, with one processor highlighted

This manual adopts the Fortran convention of depicting array elements in column-major

order, although there is no implication that successive column elements are in contiguous
memory locations. That is, element A (2,1) is not necessarily contiguous with element
A (3 ,1) in CM memory, as it would be in the memory of a serial computer. Instead, the CM
virtual processor that contains elements (2, 1) of all three conformable arrays is consid-
ered a nearest neighbor of the virtual processor that contains elements (3,1) of all three
arrays. Moving data from one array position to another thus entails interprocessor commu-

nication, as described in Chapter 6.

Version 1.0, January 1991
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NOTE

CM programmers should avoid the common Fortran 77 practice
of declaring one large array and reshaping pieces of it as needed.
With distributed memory, and given that arrays of different shapes
are allocated in different sets of virtual processors, this practice
can lead to unexpected results.

It is preferable instead to declare all the needed arrays separately,
each in the desired shape. If you need to reshape a particular array
-for instance, to change A (N,M) to A (N*M) -use the intrinsic
function RESEIAPE (see Chapter 7).

2.3.2 Scalar Extension

Scalars may be intermixed freely in expressions that have array-valued components. When
a scalar appears in such an expression, it is treated as if it were an array conformable with
the other array(s) in the expression. For example:

A = B/5

C = D * 3.14159

The first statement divides each element of B by the constant 5 and assigns it to the corre-
sponding element of A. In the second statement, each element of C gets the circumference
of a circle whose diameter is D.

Recall that scalars are stored in front-end memory. When the CM system encounters a sca-
lar in an array-valued expression, the front end "broadcasts" the value to all the CM
processors. (The scalar value serves as an immediate operand; no CM space is allocated for
it.) In effect, a scalar is conformable with any array and with different arrays in different
expressions.

Scalar extension ("broadcasting") is not only good use of CM memory; it is also extremely
efficient. It is a waste of memory for a program to store a separate copy of a constant in
every processor, since broadcasting a value from the front end takes no more time than

e I

VTersion 1.0, January 1991

�S�5�P�:���)�:�j��i�'�i�i�i�i�i�:�i�9�i

CM Fortran Programming Guide16



Chapter 2. Baszc Uperations 17

accessing it in CM memory. In fact, assuming that array A has been set to 5.0, the first of
these statements is much faster than the second:

B = B * 5.0

B=B *A

2.3.3 Array Homes

The machine on which an array is allocated is called its home. Aside from character arrays,
which always reside on the front end, an array's home is determined by how the array is
used within a program unit. A program unit is a main program, a subroutine, or a function.

* The front end stores all scalar data, including arrays that are referenced only as
subscripted variables (in the Fortran 77 way) within a program unit. All serial op-
erations, including looping operations on array elements, execute on the front end.
Essentially, the front end executes all of CM Fortran that is Fortran 77.

This is a front-end operation:

INTEGER A(4)

DATA A / 1, 2, 3, 4 /

DO 30 I-=1,4

A(I) = A(I) + 1 ! A is allocated on front end

30 CONTINUE

* The CM stores all arrays that are referenced at all as array objects within a program
unit. All operations on array objects execute on the CM. Essentially, the CM ex-
ecutes all of CM Fortran that is drawn from Fortran 90.

This is a CM operation:

INTEGER A(4)

DATA A / 1, 2, 3, 4 /

A = A + 1 ! A is allocated on CM

* The CM stores all arrays that are referenced both as array objects and as sub-
scripted variables within a program unit, although the serial operations execute on
the front end.

Version 1.0, January 1991
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This is a (rather pointless) mixed-home operation:

INTEGER A(4)

A = 5 !A is allocated on CM

DO 30 I=1,4

A(I) = A(I) + 1 ! Loop executes on front end

30 CONTINUE

These mixed-home operations tend to be inefficient, since the system moves the
CM array one element at a time to the front end to perform the serial operation. If
the algorithm demands a mixed-home operation, it is often advisable to use the CM
Fortran utility routines CMF FE _ARRAY TO CM and CMF iFE ARRAY FROM CM,

which copy an array en masse from one machine to the other. (See the CMFortran
User k Guide for information on CM Fortran utility routines.)

Arrays declared as common reside on the CM unless otherwise specified with a
compiler directive or switch. Discussion of common arrays is deferred until the
chapter on subroutines, Chapter 5.

CM programmers need to be aware of where particular arrays are allocated so as to avoid
using mixed-home operations unintentionally. Using array operations on CM arrays gives
the program the performance benefits of parallelism, but using a front-end looping opera-
tion on a CM array can exact a high cost in performance as the system moves the array
element by element from one machine to the other.

It is crucial to consider arrays' homes when calling subroutines, since CM Fortran requires
that the home of an actual array argument be the same as the home of a dummy argument
in the procedure. However, arrays' homes are determined at compile time separately for
each program unit. The programmer must therefore be aware of the homes of arrays used
as arguments and must often take explicit steps to ensure that the homes of actual and
dummy arguments match. See Chapter 5 for more information on arrays as arguments and
on controlling their homes.

Version 1.0, January 1991
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2.4 Retrieving CM Data

CM Fortran supports all Fortran I/O operations-the RmD, WRITE, and PRINT state-
ments-for both front-end and CM data.

There are various ways to retrieve and display the results of CM computations. Some in-
trinsic functions, such as MAxvAL or SUM, perform a combining operation on an array's
elements and return the scalar result to the front end. The result of a reduction function such
as this can, like any other scalar, be displayed with a PRINT statement. As shown in pro-

gram simple. fcm:

INTEGER MAXVALUE

MAXVALUE = MAXVAL( C ) ! a CMF intrinsic function

PRINT * -'The largest value in C is ', MAXVALUE

You can also retrieve a scalar value by subscripting a CM array in the Fortran 77 fashion
to indicate the desired element. Notice that this is a deliberate use of the mixed-home con-

struction: the array element that is referenced with a Fortran 77 subscript is automatically

moved to the front end, where it is displayed by the PRINT statement:

PRINT *, 'The third element of array C is ', C(3)

You could also use the PRINT statement to view all the results stored in array c, since For-
tran 1/0 statements are extended for use with CM data. As shown in program simple. .fcm:

C = A**2 + B**2 ! array-valued expression

PRINT *, 'Array C contains:'

PRINT *, C ! output of CM data

For large vectors or for matrices, a FORMT statement might be used to improve the read-
ability of the output:

INTEGER, ARRAY (4,4) :: D

PRINT 10, D

10 FORMAT (419)

Version 1.0, January 1991
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2.5 Compiling and Executing

To compile and execute a CM Fortran program:

1. Place the program in a file with the filename extension . fcm.

2. Compile the file with the CM Fortran compiler command cmf.

% cmf simple.fcm -o simple

3. Execute the program by specifying it as an argument to the CM System Software
command cmattach.

The following command line attaches the front end logically to the CM, making
some default number of processors available to execute program simple.

% cmattach simple

Attaching the Connection Machine system NAME...

cold booting... done.

Attached to 8192 processors on sequencer 0

Paris safety is off.

Array C contains:

5 8 13 20 29

The largest value in C is 29
FORTRAN STOP

Detaching... done.

See the CM Fortran User 's Guide for more information about compiling and executing
CM Fortran programs.

2.5.1 Specifying Execution Model

CM Fortran programs can be compiled for either of two execution models, specified with
the switches -paris and -slicewise. The default execution model is determined locally
at installation time.

The execution models differ in the way they use the underlying CM hardware. Programs
compiled for the slicewise execution model generate special optimizations for CM systems
equipped with the optional 64-bit floating-point accelerator; such programs can execute
only on CM systems that include this hardware option. Programs compiled for the Paris

Version 1.0, January 1991
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execution model lack the special optimizations, but they can execute on any CM hardware
configuration.

2.5.2 Incorporating Existing Routines

Object modules generated by Fortran 77 compilers, such as Digital Equipment Corpora-
tion's VAX FORTRAN compiler and Sun Microsystems' Sun FORTRAN compiler, may be
linked with modules produced by the CM Fortran compiler. This facility is very useful for
incorporating existing library routines into a CM Fortran application, as well as supporting
the incremental conversion of an application from serial code to parallel array operations.
Procedures compiled by foreign Fortran compilers will not, of course, make use of the CM
processors.

Version 1.0, January 1991
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Chapter 3

Array Declarations and Initial Values

CM Fortran supports all the Fortran 77 syntax for declaring and initializing arrays. Any
array that is declared and/or initialized in the Fortran 77 manner can be used in an array
operation; as always, such use will cause the array to be allocated in CM memory and pro-
cessed in parallel.

This chapter introduces a number of additional CM Fortran features, many drawn from
Fortran 90, for declaring and initializing arrays and, in some cases, scalars as well. These
features include:

* Attributed type declarations, which specify not only an object's type but also such
attributes as ARRAY (dimensionality), DATA, or PARAETER. These attributes sub-
stitute for a separate DIMENSION, DATA, or PARAMETER statement.

* Array constructors, which specify the values of a 1-dimensional array. An array
constructor can be used, for example, to initialize a vector or to pass a vector of
values as an argument to an intrinsic function or external procedure.

* Dynamic initialization by means of array assignments and a CM Fortran utility
routine for generating random numbers.

NOTE

Declaration syntax does not determine where an array is allocated
or what operations may be performed on it. The choice of syntax
is entirely a matter of style and convenience; it does not affect pro-
gram behavior.
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This chapter focuses on declaring and setting the initial values of local arrays, including
arrays that are local to the main program and passed as actual arguments. The subject of
common arrays is deferred until the discussion of subroutines in Chapter 5.

3.1 Declaring Arrays

A Fortran 90 attributed type declaration is a single statement that can associate several
attributes besides type with the object being declared. One of these attributes is ARRAY,
which has the same semantics as the DIMENSION statement.

3.1.1 Using the ARRAY Attribute

An attributed type declaration with the attribute ARRAY has the form:

type, ARRAY ( dims ) :: name [, name, ... ]

For example, the declaration

INTEGER, ARRAY(10) :: ARRAY NAME

is equivalent to the two Fortran 77 statements

INTEGER ARRAY NAME

DIMENSION ARRAYNAME(10)

Attributed type declarations are a convenient way to declare several conformable arrays:

REAL, ARRAY(512) :: A,B,C,D ! four conformable vectors

COMPLEX, ARRAY(100,100) :: E,F,G,H ! four conformable matrices

Version 1.0, January 1991
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3.1.2 Array Properties

Declarations of the ARRAY attribute describe two properties of the arrays:

* Rank (the number of dimensions)

* Shape (the extents of the dimensions in rank order)

Scalars have rank 0, and arrays can have rank 1 through 7. Vectors A, B, C, and D shown
above have shape [512]; matrices E, F, G, and all have shape [100,100]. The size of an
array is the product of the extents of its dimensions. Thus, the vectors are all of size 512,
and the matrices are of size 10,000.

As in Fortran 77, the extent of a dimension can be specified with a lower bound as well as
an upper bound. For example:

INTEGER, ARRAY(-40:100) :: CTEMP

This statement declares an array element for each Celsius temperature between the point
where the Celsius and Fahrenheit scales converge and the boiling point.

3.2 Defining Named Constants

A type declaration with the attribute PARA_TER defines a named constant. Like the state-
ment PARAMTER, this attribute can be used only for scalar objects, not for arrays.

A declaration with the attribute PARAMETER has the form

type, PARAMETER :: name = constant-expression

For example:

INTEGER, PARAMETER

REAL, PARAMETER

LOGICAL, PARAMETER

:: ONE = 1
:: PI = 22.0 / 7.0

:: T = .TRUE., F = .FALSE.

0
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3.3 Setting Array Values

Arrays can be initialized with a DATA statement, as in Fortran 77, or with the DATA attribute
in a type declaration. The values of a DATA attribute for an array are specified with a CM
Fortran feature called an array constructor

As with declaration syntax, the form chosen for static initialization does not affect the
home of an array or the operations that may be performed on it.

Initial array values can also be set dynamically by means of assignment. CM array objects
can be assigned array constructors, or they can be seeded with random values by means of
a CM Fortran utility routine. These operations cannot be performed on front-end arrays.

3.3.1 Assignment

As in Fortran 77, arrays can be initialized dynamically by assigning a value to each ele-
ment. However, in CM Fortran the assignment can also be an array operation. For example:

INTEGER, ARRAY(5) :: A, B

DO I=1,5

B(I) = 0 ! a front-end loop assignment

END DO

A = ! a CM array assignment

Like any array operation, the array assignment that initializes A guarantees that A will be
allocated on the CM. Array B, initialized with a serial loop, will be allocated on the front

end unless it is used in an array operation elsewhere in the program unit. (Notice that if B
is allocated on the CM, the use of a loop to initialize it is much less efficient than an array
operation would be.)

The values assigned to a CM array can be any expression of the appropriate type, including
values retrieved by a READ statement or those generated by an array constructor (see Sec-
tion 3.3.4).

Initialization is one of several uses of the specialized CM Fortran assignment statements
FORALL, or elemental array assignment, and w RE, or masked array assignment. These
statements are described later in this manual.
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3.3.2 CMF_RANDOM Subroutine

CM Fortran does not yet implement the Fortran 90 intrinsic function RANDOM for filling a
numeric array with random values. For the interim, CM Fortran provides a utility proce-
dure:

CMF RANOM( ARRAY, LIMIT )

The argument array must be an array object, residing on the CM. This procedure cannot
be used with an array that is used only in the Fortran 77 manner (with scalar subscripts) in
the program unit.

The range of values generated by cm _Rao depends on the type of the argument array.
If ARRAY is of type integer, then the LIMIT argument serves as an exclusive upper bound.
That is, the array is filled with random values in the range 0 to LIMIT - 1. If ARRAY is real
or double-precision real, then LIMIT should be 1.0 and the values are in the range 0.0 to
1.0 (exclusive). For example:

DIMENSION I(100), A(50,50)

CALL CMF_RANDOM( I, 1000 ) ! range: (0, 999)

CALL CMF_RANDOM( A ) ! range: (0.0, 1.0)

See the CMFortran User Guide for more information about this and other utility proce-
dures that generate random numbers.

3.3.3 DATA Statement

A DATA statement can be used in the Fortran 77 fashion to initialize both scalars and arrays.
It does not matter which syntax was used to declare the object.

INTEGER I,A(5),B(10)

DATA I /1000/

DATA A / 1,2,3,4,5 /
DATA B / 10*0 /

As in Fortran 77, a DATA statement may also have an implied DO loop, which expands
under the control of index variables to form a sequence of values. (The effect is similar to
using a loop construct for dynamic initialization.) For example, given a 4 x 8 array D, the
following two DATA statements initialize the left half to 0 and the right half to 1:
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INTEGER, ARRAY(4,8) :: D

DATA ( ( D(I,J), J=1,4 .)
DATA ( ( D(I,J), J=5,8 )

Dim 2

S 1 (1,1)

(4,1)

I = 1,4 )
I = 1,4 )

/ 16*0 /
/ 16*1 /

(108)

(4,8)

3.3.4 Array Constructors

An array constructor is a means of constructing an unnamed, 1-dimensional array by
specifying an arbitrary sequence of scalar values.

Assigning an array constructor to a vector serves to initialize the vector with that sequence
of values; the assignment is a CM operation, which causes the vector being assigned to be
allocated on the CM. An array constructor may also be passed as an argument to a proce-
dure, which has the same effect as passing a CM vector as an argument.

Array constructors can be specified in several ways. The simplest form is a list of the
desired values, separated by commas and enclosed in square brackets:

INTEGER, ARRAY(4) :: V

V = [ 10, 20, 30, 40 ]

If the values are not of the same type, all values are coerced to the type of the first value:

R = [ 10.0, 20, 30.OdO, 40 

C = [ (0.0,0.0), 1, 2.0, 3 

! R must be type REAL

! C must be type COMPLEX

II
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Another form of array constructor uses a repeat count syntax, shown here with 100-element
vectors:

A = [ 50[1], 50[0] ! 50 's and 50 O's

B = [ 25[ 1.0,2.0,3.0,4.0 ] ] ! sequence repeated 25 times

Array constructors can also take a form resembling the control variables of a DO loop or

a triplet subscript:

[ first : last : increment ]

This form of array constructor uses only integer values. It builds a vector of values in the

sequence specified; the resulting vector may be coerced to another type. For example,

C = [1:100] ! integers from 1 to 100

D = REAL( [2:200:2] ) ! even reals from 2 to 200

0 E = CMPLX( [0:99],[0:99] ) ! sequence of 100 complex nos.

F = SQRT( [1:500:5] ) ! sequence of real square roots

3.3.5 DATA Attribute

The DATA attribute in a type declaration serves to initialize a scalar variable or an array.

The form for a scalar declaration is

type, DATA :: name = value

For example,

INTEGER, DATA :: SIZE = 1024
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To declare and initialize an array, the declaration associates the DATA attribute with an array
constructor. Since array constructors are always 1-dimensional, the DATA attribute can be
applied only to 1-dimensional arrays. The form is

type, ARRAY (dim), DATA :: name= [ array-constructor ]

For example,

INTEGER, ARRAY(10), DATA :: J = [ 0,9,4,7,2,8,6,5,1,3 ]

REAL, ARRAY(10), DATA :: R = REAL( [0:9] ), B = [0.0,1:9]

DOUBLE PRECISION, ARRAY(10), DATA :: D = [5[0.OdO],5[1.OdO]]

COMPLEX, ARRAY(10), DATA :: C = [ (0,0), 1:9 ]

As these examples suggest, the different forms of array constructor provide some flexibil-
ity in specifying sequences of values as the DATA attribute of an array. However, unlike a
DATA statement, a DATA attribute cannot be associated with an implied DO loop.

When used in a type declaration, an array constructor is not considered an array operation
and has no effect on the array's home. The arrays J, R, B, D, and c could be allocated either
on the front end or on the CM, depending on how they are used in the program unit.

As shown in the case of R, the array constructor can be passed as an argument to a type-
conversion function in the declaration. However, other elemental and transformational

intrinsic functions-such as RESHAPE-cannot be used in specification statements.

3.4 A Note on Common Arrays

The features described in this chapter for declaration and dynamic initialization (assign-
ment) apply to arrays in common blocks as well as to local arrays. However, the homes of
common arrays are determined differently from those of local arrays, and the home can
affect the method of statically initializing a common array. CM Fortran's treatment of com-
mon arrays is decribed in conjunction with subroutines in Chapter 5.

.
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Chapter 4

Selecting Array Elements

The operations discussed so far have affected all the elements of an array object. CM For-

tran offers the two Fortran 90 methods for selecting only certain array elements for an
operation:

* By value: Conditional (or masked) operations include or exclude elements
depending on their values.

* By position: Operations on an array section affect only a subarray of elements
9 specified by their positions along each dimension of the parent array.

Another method of selecting subarrays, the FORALL statement, can select elements both by
value and by position. FORALL is described in Chapter 8. As with whole arrays, the lan-
guage references all the elements of an array section or a masked array at once, and the

Connection Machine system processes the elements in parallel.

4.1 Conditional Operations

Operations that are conditional on the element values of (CM) array objects include:

* The wnRE statement and construct, which can be used to make an array assign-

ment conditional

* CM Fortran intrinsic functions that take a MASK argument

* Front-end (Fortran 77) conditionals or loop constructs that use a scalar value
returned from the CM as a control specification
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4.1.1 The WHERE Statement

The CM Fortran WHERE statement is similar to the Fortran 77 IF statement. The wHERE.

statement tests array elements (in parallel) and then performs an assignment of those that
meet the specified condition. The format is:

WHERE ( mask-expression ) array-assignment

For example, to avoid division by zero in an elemental array operation:

WHERE ( A.NE.0 ) C = B/A

When executing this statement, the system creates a logical array containing the results of
the relational operation .NE. It uses this array as a mask to deactivate the processors that
contain 0 values for A, while the remaining processors perform the division (see Figure 5).
WHERE is thus called a masked array assignment.

WHERE (A.NE. O)
C = B/A

1 2

mask

B

C

"..''=.. ----- I

D included

C excluded

2 1 E 3 1°. 21~~~~~~~~~~~~~~~~
T ,:--'.. -.: T-T T "

20 20 :;11:1 20 :;0:' 2

Figure 5. Processors deactivated in a masked array assignment

Notice that arrays can be masked by an expression that does not reference them, but instead
references another (conformable) array:

WHERE ( A.NE.0 ) C = B**2
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4.1.2 The WHERE Construct

Like the IF statement, the WHERE statement is expanded into a construct with the END
WHERE statement and an optional ELSEWHERE. The WHERE construct is comparatively re-

stricted: Fortran 90 does not define nested WHERE statements, and the body of the construct
can contain only array assignments. A simple WHERE construct is:

WHERE ( A.GE.0 )
B = SQRT( A)

ELSEWHERE

B= 0

END WHERE

When executing this construct, the system computes a logical mask to screen out negative
values of A from the SQRT operation. It then inverts the mask, reversing the true and false
values, to activate only the processors that have negative values for A. The newly active
processors then assign 0 to B.

WHERE (A.GE. O)

B = SQRT (A)

A

mask

B

ELSEWHERE

B = 0 A

inverted
mask

B

D included

m excluded
k..un

16 -64: 9 4 4
... : . .' ::' ~ .) q ' ..-:.::...
· .: · , ·.: . ,. o

. . ....::.: ...: .. ...: ..

~',.'2
. r :- :.1 6 s :: *:: : . · ::. ':;: '. 

:16 '- 6 ~ I/: : :' .:

1: 01-01 31
}:S^·: O 9 ·~.0: , ·~1: ·:: ..- ::,4:·~ 

6

!°L

Figure 6. Inversion of the mask array in a WHERE-ELSEWHERE construct
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4.1.3 Conditional Intrinsic Functions

Many of the array-processing intrinsic functions (described in Chapter 7) perform a mask-
ing operation similar to the action of the WHERE statement. With these functions, the mask
is supplied as an argument. For example, to take the product of the non-zero values of array
A, invoke the function PRODUCT with a mask that eliminates the zero values:

SCALARPRODUCTOF A = PRODUCT( A, A.NE.0 )

If a masked intrinsic function is used within a WHERE statement, the two masks are com-
pletely separate. The WHERE mask has no effect on the evaluation of the function reference;
the function's mask argument has no effect on the evaluation of the WHERE assignment. For
example:

WHERE ( A.LE.10 ) B = A + PRODUCT( A, A.NE.0 )

The function reference in this example computes the product of A's values, excluding any
zero values but not excluding values over 10. This scalar product is then replicated to con-
form in shape to array A and added (elementally) to any elements that are less than or equal
to 10-including any zero values. Thus:

* An array element of 12 would be included in the computed product but not in-
cluded in the addition and assignment operations; it is excluded by the WHERE

mask but not by the function's mask argument.

* An array element of O would not be included in the product but would be included
in the addition and assignment; it is excluded by the function's mask argument but
not by the WERE mask.

The behavior of masked intrinsic functions within a WHERE statement is a CM Fortran ex-
tension to the standard language. Fortran 90 permits only elemental functions, such as
SQRT, in WHERE statements. None of the elemental functions takes a mask argument.
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4.1.4 Front-End Conditionals

A scalar value derived from a CM array can be used in a serial (front-end) construction to
control a conditional or iterative operation. The scalar can be either:

* The result of scalar subscripting of a CM array, such as CM_ARRAY (3 ,10)

* The scalar result returned by an intrinsic reduction function, such as ANY or SUM
(see Chapter 7)

For example, this IF construct uses the logical result of the reduction function ANY as its
test condition. It branches according to whether any of the elements of the array object A
is O.

IF (ANY ( A.EQ.O) ) THEN

PRINT *, 'Array A contains a 0.'

ELSE

PRINT *, 'Array A does not contain a 0.'

END IF

A somewhat more elaborate operation combines aWEE construct on the CM with a front-
end control construct, such as DO, DO WHILE, DO TIMES, or CASE. The purpose is to
perform a parallel operation repeatedly until a local condition is met in each processor. The
WHERE construct masks out the processors that have met the local condition, and the front-
end loop construct checks the result of a reduction function after each iteration to determine
whether any processors remain active.

For example, the following program uses the scalar result of ANY to control a serial DO

WHILE loop. In this program, the CM computes the floor of the base-2 logarithm of each
element of array A Each CM processor divides its element of A by 2 repeatedly until the

element becomes 1, accumulating the iteration count in B. When the A value becomes 1,
the processor "drops out," masked out by the WHERE construct. Different processors repeat
the operation different numbers of times, depending on their initial values for A The serial
DO WHILE loop continues until no processor is left active.

Version 1.0, January 1991

Chzapter 4. Selecting Array Elements 37



3WECM Fortran Programming Guide

PROGRAM BASE2_LOG

INTEGER N

PARAMETER (N = 256)

INTEGER, ARRAY (N,N) :: A,B

IMPLICIT NONE

C Initialize A with non-zero random numbers

CALL CMFRANDOM( A, 1000)
A=A+ 1

! A CMF utility routine

! All A.GT.0

C Compute B = log_2(A)

B = 0
DO WHILE ( ANY( A.GT.1 ))

WHERE ( A.GT.1 )
A = A/2

B = B+1

END WHERE

END DO

STOP

END

! Front-end loop

! CM conditional
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4.2 Array Sections

Fortran 90 defines syntax for specifying some or all of an array's elements in a particular
reference. This triplet notation, mentioned above in Section 1.1.2, resembles a DO loop con-
trol specification:

lower-bound: upper-bound: stride

For example, A (1:4:1) references every element of an array declared as A (4), while
B (1: 3:1, 1: 5:1) references every element of a matrix declared as B (3, 5). The lower
and upper bounds default to the declared bounds of the array; the stride (increment) de-
faults to 1. Thus, these array references default to, simply, A and B.

As you might expect, you can specify bounds other than the array's declared bounds, or a
stride other than 1, to indicate a subset of array elements. A subset of elements is called an
array section; the array from which a section is specified is called the parent array.

4.2.1 Triplet Examples

Given a 10-element vector A, the expression

A(1:5)

refers to its first five elements (the stride defaults to 1); whereas the expression

A(1: 10:2)

refers to elements 1, 3, 5, 7, and 9 in that order.

Negative Strides

Negative strides count down from the first value specified to the second. Thus, the expres-
sion

A(10:2:-2)

specifies the elements 10, 8, 6, 4, 2. However,

A(10:2:2)

specifies a null sequence of subscript values (an empty array) because the first value is
greater than the second one, but the stride is positive.
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Multidimensional Parent Arrays

Sections of multidimensional parent arrays are specified with a triplet for each dimension,
separated by commas. For example, to specify the upper half of a 4 x 6 matrix B:

B(1:2, 1:6)

And, to specify the lower right quadrant:

B(3:4, 4:6)

Finally, to specify only the even columns:

B(1:4, 2:6:2)

...

_ .. _._ g _ X _ g~~~~..':~~!_~~~~~~~~~i ' "_"" ' ~_ "

Version 1.0, January 1991

40 CMFortran Pogramming Guide



Cat ISee'n Arr....y Elm.ens. 41.U- ' yo .:..-of. , fM.. . o

Triplets and Scalar Subscripts

Triplet subscripts can be intermixed in an array reference with Fortran 77-style scalar sub-
scripts. For example, given the 4 x 6 matrix B, the following specifies a vector-shaped
section that contains the first three elements in column 5:

B(1:3, 5)

Notice that the rank of this section is not the same as the rank of its parent array. The rank
of an array section is the number of dimensions that are specified with a Fortran 90 sub-
script, not counting any that are specified with Fortran 77 (scalar) subscripts. As another
example, the following specifies a 2-dimensional section of a 4-dimensional array C:

C(1:10, 1, 1:50:2, 3)

Default Triplet Forms

Any item of the triplet, or the triplet for any dimension, can be allowed to default, as long
as placeholder colons and commas are retained to avoid ambiguity. cThe stride in particular
is often omitted.) For the sake of clarity, this manual usually specifies both bounds in a
triplet, but the following sets of forms are equivalent when referencing sections of an array
declared as D (8 , 10):

D(1:4:1, 1:5:1)

D(5:8:1, 1:10:1)

D(1:3:1, 9)

<=> D(1:4, 1:5)

<=> D(5:8, 1:10)

<=> D(1:3, 9)

<=> D(:4, :5)

<=> D(5:8, :)

<=> D(:3, 9)
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4.2.2 Using Array Sections

An array section can be used as an operand or argument in the same way that whole arrays
are used, and the CM system operates on all the specified elements in parallel.

Conformable Sections

When an array section is used in an expression or assignment with other array sections or
whole arrays, they must all be of the same shape. Scalars can, of course, be intermixed
freely in such expressions.

For example, given two 8 x 10 matrices D and E, the following statement adds the corre-
sponding elements in the upper left quadrant. Notice that the two sections specified are
identical.

D(1:4, 1:5) = D(1:4, 1:5) + E(1:4, 1:5)

Sections and Communication

Operations on array sections do not require interprocessor communication if the array sec-
tions are made up of corresponding elements of conformable parent arrays. For example,
the arrays

REAL, ARRAY (20,20) :: A,B,C

are allocated in the same set of virtual processors. When you select the same elements from
all the arrays for an operation, the data items are already in the right processors for the
operation to proceed. For example, this is an in-processor operation:

A(1:10, 2:20:2) = B(1:10, 2:20:2) + C(1:10, 2:20:2)

In this example, the system simply deactivates the processors that contain the array ele-
ments that are not included in the sections. The other (active) processors then perform an
elemental addition and assignment on values stored in their own memories.
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In contrast, operations on array sections that are of the same shape but are not the corre-
sponding elements of their parent arrays do require interprocessor communication. For
example:

A(1:10, :) = B(1:10, :) + C(11:20, :)

The three parent arrays are all in the same set of processors. However, the elements selected
from array C are in different processors from those taken from A and B. Before the system
can perform the operation, it must allocate temporary storage for the section drawn from
C in the processors that contain the specified elements of A and B. Naturally, this (transpar-
ent) interprocessor communication adds to the program's execution time.

Array sections that are selected from parents of different shape are not located in the same
set of processors because the parents were not allocated in the same set of processors to
begin with. The system must always move the specified array elements into the appropriate
processors before it can perform an operation. For example, this assignment statement
requires interprocessor communication:

REAL, ARRAY (5) :: D

REAL, ARRAY (10) :: E

E(5:10) = D

Since the two parent arrays are of different shape, they are allocated in different sets of
processors. Therefore, the system must (transparently) perform interprocessor communica-
tion to line up the operands in the same set of virtual processors before executing the
assignment statement.

CM Fortran provides a compiler directive, LAYOUT, that you can use to minimize inter-
processor communication when assigning arrays and array sections. See Chapter 9.
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Chapter 5

Subroutines

To operate on scalars and front-end arrays, a CM Fortran program can define and invoke
subprograms-subroutines and functions-in the Fortran 77 fashion. However, some spe-
cial considerations enter when the subprograms operate on CM array objects (that is, arrays
referenced in the Fortran 90 manner).

The special considerations are:

* The ability to pass whole arrays and array sections as actual arguments

* The requirement that the shapes of actual and dummy arguments must match

* The requirement that the homes of actual and dummy arguments must match

* The use of the INTENWT attribute to save time and memory when passing array sec-
tions as arguments

* The ability to allocate local arrays dynamically

* The means of controlling the homes of common arrays

A Note on Functions

Functions can, like subroutines, take array objects as arguments and modify them. Hence,
the special considerations for operating on CM array objects apply to both kinds of proce-
dures. In addition, user-defined functions can return array-valued results (see Section 5.6).

CM Fortran also supports Fortran 77 statement functions, which define a function in a
single statement. A statement function can operate only on scalar data (that is, it cannot use
array operations), and it can be called only within the program unit where it is defined.
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5.1 Array Objects as Arguments

The general rule of Fortran 90-style array references-that they refer to all the array ele-
ments of interest-applies to array arguments just as it does to array-valued expressions
and assignments. The syntax by which you reference an array object as an actual argument
is sometimes identical to the Fortran 77 syntax; that is, you specify just the array name to
pass the whole array. However, the meaning of the reference is slightly different depending
on whether the actual argument is a front-end array or a CM array object.

To illustrate the difference, assume that the following array has been declared in a main

program to hold some information from a database. The main program can then pass the

array as an actual argument to various subroutines that sort, compute, and display the data.

INTEGER MYDATA(100)

CALL SORT( MYDATA )

END

SUBROUTINE SORT( ARRAY )

INTEGER ARRAY(100)

The meaning of the reference to the actual argument MY_DATA depends on whether the

array has been established in the calling procedure as a front-end array or a CM array:

* As afront-end array reference, MYDATA refers to the first element of the array, and
the declaration of the dummy argument ARRAY indicates how many elements are
needed.

* As a CM array reference, MYDATA refers to all the elements of the array, and the

declaration of the dummy argument must conform to it in size and shape.

The distinction becomes more obvious if we decide to sort only part of the array. If we want
to pass, say, the second half of array MY_DATA to subroutine SORT, the syntax makes it clear
that the Fortran 77 argument is a scalar value, while the Fortran 90 argument is an array

object:
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w If MY_DATA is a front-end array, a scalar subscript is used:

CALL SORT( MY DATA(51) )

SUBROUTINE SORT( ARRAY )

INTEGER ARRAY(50)

! Actual arg is 51st element

! Dummy is 50 elements

* If MY_DATA is a CM array, a triplet subscript is used:

CALL SORT( MY_DATA(51:100) ) ! Actual arg is 50 elements

SUBROUTINE SORT( ARRAY )

INTEGER ARRAY(50)

* . .

! Dummy conforms to actual

NOTE

This chapter uses literal constants in declaring CM array argu-
ments for the sake of clarity in comparing their shapes. Naturally,
a general-purpose procedure is more likely to use variables or
named constants in declaring array arguments.

.Ss-.-S~~xgg95t {z>X 5'555S fX Sff *******'**2.** '**' :::..S:,::: ::::.... *f:': ::::::::::::::::::::::::55:s5~55s :5 :?s5X 5: S :.:*555:S5> S :555$55 5:X 55

Actual CM array arguments may not be referenced by scalar subscripts in the Fortran 77
fashion. Recall from the discussion of mixed-home array operations in Chapter 2 that a
scalar subscript reference to a CM array causes that element to be moved to the front end.
Thus, specifying the single CM array element MY_DATA (51) passes a single front-end val-
ue, not a CM array that begins at that element.

When an array argument is unsubscripted, its semantics and its implementation are differ-
ent from typical Fortran 77 implementations. An unsubscripted reference to a CM array as
an argument is a pointer to an array descriptor, not a pointer to the first element of the array
itself. An array descriptor is a front-end structure that identifies the array and describes its
properties, including its shape. In CM Fortran, an array reference with an implicit or explic-
it triplet subscript points to the descriptor of that array.
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5.1.1 The SAVE Attribute

CM Fortran permits the values of an array object to be retained between procedure calls.
As in Fortran 77, you specify this behavior by inserting a SAVE statement in the specifica-
tion part of the main program (before any static initialization of the array). Alternatively,
you can achieve the same effect with the SAVE attribute in the type declaration:

INTEGER, ARRAY(3), SAVE, DATA :: ORDER = [ 1, 2, 3.]

5.2 Homes of Array Arguments

As shown in Chapter 2, the home of an array-front end or CM-is determined by how the
array is referenced within a program unit: main program, function, or subroutine. Program
units are compiled separately from one another, and the compiler carries no information
about arrays (or any other object) from one compilation to another.

CM Fortran requires that actual and dummy arguments have the same home. The separate
compilation of program units means that an array might come to have different homes in
different program units-unless the programmer explicitly prevents this from happening.

5.2.1 Mismatched Homes

As an example of mismatched array homes, imagine that the main database program sim-
ply initializes KY DATA with a READ statement and then calls subroutines SORT, COMPUTE,

and so on. The compiler will allocate array MY_DATA on the front end in the main program.
However, if subroutine SORT uses its dummy array in a Fortran 90 array operation, the
compiler expects that array to be allocated on the CM.

When at run time the front-end array is passed as an argument to SORT, the result will be
an error or incorrect results. The same result occurs when a CM array is passed to a proce-
dure that expects a front-end array. The error of mismatched array homes cannot be
detected at compile time in the current version of CM Fortran.

(The error of mismatched homes can, however, be detected at run time if the program is
compiled with the switch -argument checking.)

Version 1.0, January 1991

48 CMForlran Programming Guide



Chapter S. Sbotins X, 9

5.2.2 Avoiding Mismatched Homes

To avoid run-time errors, the programmer must ensure that the homes of actual and dummy
array arguments match. If an array is referenced in the Fortran 90 manner in any program
unit, then all other program units that use that array should cause it to be allocated on the
CM.

There are three ways to force an array to have a CM home:

* If appropriate, declare the array in a COMMON block. All common arrays are allo-
cated on the CM unless otherwise specified. (See Section 5.7 for more information
on the homes of common arrays.)

* Alternatively, use the array in a Fortran 90 array operation in every program unit,
even in program units where such an operation is not really needed.

* Alternatively, and somewhat more elegantly, use the compiler directive LAYOUT to
control the home of the array in each program unit.

The LAYOUT directive, described in Chapter 9, serves primarily to control the map-
ping of array elements onto CM virtual processors. When the directive applies the
keyword :Ews to any dimension of an array, that array is allocated on the CM no
matter how it is used in the program unit.

For example, the following directive line forces MY DATA to be allocated on the
CM:

INTEGER MYDATA(100)
CMF$ LAYOUT MY DATA' (:NEWS)

CMF$ must appear, starting in column 1, to indicate that the line is a compiler direc-
tive; column position is otherwise unimportant. Spaces must separate the
components of a compiler directive.

5.2.3 Verifying Array Homes

It may be useful during program development and debugging to check where the compiler
has allocated particular arrays. The compiler switch -list provides this information.

This switch produces the file program-name.lis, which contains information about a
number of program features. Under the "Arrays" section of the listing, the column "Home"
specifies either CM or FE for each array in the compiled program. A sample listing is:
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% cmf -list my-program.fcm
% more my-program.lis

ARRAYS

Offset Size Type Bl
----- I * T.l* l t

0

120

40
80
40

R*4

C*8

1*4

lo(

lo(

lo(

ock/Class

cal

Cal

cal

Cal

Home

CM

CM

FE

FE

Name

ARRAY 1

ARRAY 2

ARRAY 3

ARRAY 4

See the CMFortran User S Guide for explanation of the other entries in this listing.

5.3 Types and Shapes of Array Arguments

Actual array arguments must always be of the same type as their corresponding dummy
arguments in a subroutine. As in Fortran 77, mismatched types result in a run-time error
or incorrect results.

If the actual and dummy arguments are CM arrays, they must also be of the same shape.
This requirement follows from the semantics of a Fortran 90-style array reference to an
actual argument: since the actual argument has a shape, its shape must conform to that of
the dummy. It is an error to reshape a CM array across procedure boundaries.

(The requirement that argument shapes must match is imposed by CM Fortran. Fortran 90
does not require argument shapes to match.)

5.3.1 Declaring Dummy Array Shapes

A dummy CM array can be either explicit-shape or assumed-shape, depending on how
much information its declaration provides about its dimensions.

Explicit-Shape Dummies

An explicit-shape dummy array is one whose dimension sizes (or bounds) are all declared,
either with constants or with variables. If a dimension or bound is declared with a variable
whose value is not known until run time, the dummy array is called an adjustable array.
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SUBROUTINE SUB1( A, B, C, D, E, F )

REAL A(100,100) ! explicit-shape

REAL B(-10:5, 0:100)! explicit-shape

INTEGER C,D

REAL E(C,D) ! explicit-shape, adjustable

REAL F(-10:20, C:D) ! explicit-shape, adjustable

An explicit-shape dummy array may be allocated either on the front end or on the CM,
depending on how it is used in the procedure (unless its home is constrained as described
above in Section 5.2.2).

Assumed-Shape Dummies

An assumed-shape dummy array has an explicit rank, but its dimension extents are un-
specified. The dummy array assumes the shape of the actual argument passed. An
assumed-shape dummy is a CM array, regardless of how it is used, and the corresponding
actual argument must be established in the calling routine as a CM array.

Some examples of assumed-shape dummy arrays are:

SUBROUTINE SUB2( F, G, H, N)

REAL F(:,:,:)

REAL G( 0:, 100: )

INTEGER N

REAL H( N:

Note the difference in syntax between an assumed-shape dummy array and an assumed-
size dummy array, where the last dimension assumes the size of the actual argument passed:

SUBROUTINE SUB3( CM_ARRAY, FE_ARRAY )

REAL CMARRAY(:,:)

REAL FE ARRAY(100,*)

! assumed-shape; CM array

! assumed-size; FE array

Assumed-size arrays are a feature CM Fortran draws from Fortran 77; only front-end
arrays can be assumed-size. Assumed-shape arrays are a feature CM Fortran draws from
Fortran 90; only CM arrays can be assumed-shape.
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5.3.2 Declaring Local Array Shapes

An array that is local to a subprogram is temporary: it is allocated upon entry to the proce-
dure and deallocated upon exit from the procedure. A local array can be declared with
explicit bounds, or it can be made to conform to an adjustable dummy array. A local CM
array can also be made to conform to an assumed-shape dummy array.

In cases where a dummy array is non-adjustable, the declaration of a conformable local
array is straightforward. As in Fortran 77, the local array is declared with the same constant
size (or bounds) as the dummy array. For example:

SUBROUTINE SUB4( A )

REAL A(100,100)

REAL TEMP(100,100)

When a local CM array needs to conform to an adjustable dummy array, the local is de-
clared with the same variables that specify the shape of the dummy. Such a local array is
called an automatic array; space for it is allocated at run time on the CM. The array TEM

in the following fragment is an automatic array:

SUBROUTINE SUB5( B,I,J )

INTEGER I,J

REAL B(I,J) ! Dummy B is adjustable

REAL TEMP(I,J) ! Automatic TEMP conforms to B

TEMP = B ! TEMP and B are CM arrays

You can also declare an automatic array to be conformable with an assumed-shape dummy

array. Doing so requires finding, at run time, the dimensions of the corresponding dummy

array. The intrinsic functions that return this information are shown in Section 5.5.

Automatic arrays need not be associated with dummy arguments, of course. Array TEMP

in the following fragment is also a CM automatic array. It is allocated at run time, with its

shape dependent on the values of the actual arguments I and J.

SUBROUTINE SUB4( I,J )

INTEGER I,J

REAL TEMP(I,J) ! TEMP is automatic

TEMP = TEMP + 1 ! TEMP is a CM array
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Automatic arrays are useful, for example, in writing a program that scales at run time to
the size of a data set. The following program reads from a file the information needed to
determine array size. It then calls a subprogram, which uses the size data to specify the
dimensions of two automatic arrays A and B.

PROGRAM ANYSIZE
INTEGER N,M

READ (*,*) N,M

CALL DUMMYMAIN( N,M )

! Get size

END

SUBROUTINE DUMMYMAIN(

INTEGER N,M
REAL A(N,M), B(N,M)

N,M )

i automatic arrays

. . code that uses A and B in array operations . .

RETURN

END

5.3.3 Making Subroutine Interfaces Explicit

The separate compilation of program units means that the compiler cannot ordinarily com-
pare the types and shapes of actual and dummy arguments across subroutine boundaries.
However, the compiler can check for type and shape mismatches if the program makes the
subroutine interface explicit to the calling routine.

The interface can be made explicit by means of an interface block, which duplicates the
subroutine's interface within the calling routine. For example, recall the interface to sub-
routine SORT:

SUBROUTINE SORT( ARRAY )

INTEGER ARRAY (100)

To make that interface explicit to the main program that calls subroutine SORT, insert the
following interface block into the specification part of the main program:
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INTERFACE

SUBROUTINE SORT( ARRAY )
INTEGER ARRAY(100)

END INTERFACE

Interface blocks are not required in CM Fortran, but they are advisable when calling any
procedure that has dummy CM array arguments. The explicit interface helps in catching
type errors and shape errors at compile time.

Notice, however, that the interface block shown contains no information on the home of
the argument array. Thus, the compiler cannot detect an error of mismatched array homes.
This information is available to the compiler only if the array's home is determined by a
compiler directive, such as LAYOUT. In that case, the directive line must appear in the inter-
face block, as well as in the declaration of the dummy argument in the subroutine and in
the declaration of the actual argument in the calling routine.

INTERFACE

SUBROUTINE SORT( ARRAY )
INTEGER SORT(ARRAY)

CMF$ LAYOUT ARRAY (:NEWS)

END INTERFACE ,,,

5.4 Array Sections as Arguments

The example at the beginning of this chapter showed a section of array MY_DATA passed
as an argument to subroutine SORT. To sort only the second half of the data:

INTEGER MYDATA(100)

CALL SORT( MY_DATA(51:100) ) ! Actual arg is 50 elements

END

SUBROUTINE SORT( ARRAY )
INTEGER ARRAY(50) ! Dummy conforms to actual

Similarly, to select and sort every fourth data element, pass a section with a stride of 4:
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CALL SORT( MYDATA(1:100:4) )

SUBROUTINE SORT( ARRAY )
INTEGER ARRAY(25)

! Actual is 25 elements

! Dummy conforms to actual

Array sections can be used anywhere that whole CM arrays are used, with no difference
in the semantics of the array reference. (Recall from Chapter 4 that a reference to a whole
array is simply the default form of a triplet subscript.) Thus, actual arguments that are array
sections must match their corresponding dummy arguments in shape as well as in type, and
interface blocks are recommended to facilitate error checking.

5.4.1 Passing Array Sections

One way in which array sections do differ from whole arrays is in the way the system
passes them as arguments. Whole arrays are passed in place, whereas array sections are
first copied to a temporary location. If the subroutine alters the array section, then it is also
copied back into the original (parent) array upon exit from the subroutine.

(Some sections taken from an array that is subject to a LAYOUT directive are passed in
place. See Section 9.4 for a discussion of this special case.)

One way to avoid any needless copying is to avoid passing array sections as arguments
when possible. If the algorithm permits, you can pass the whole array and have the subrou-
tine select the desired section. For example:

INTEGER MY DATA(100)

INTERFACE

SUBROUTINE SORT( ARRAY )

INTEGER ARRAY(100)
END INTERFACE

CALL SORT( MYDATA )

END

! Optional interface block

! Actual arg is 100 elements

SUBROUTINE SORT( ARRAY )
INTEGER ARRAY(100) ! Dummy conforms to actual

ARRAY(1: 100:4) = [somesortingalgorithm] ! Operate on 25 elements
END
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5.4.2 The INTENT Attribute

When array sections must be passed as arguments, the INTENT attribute can increase pro-
gram performance by preventing needless copying. The INTENT attribute, applied to any
dummy argument, indicates whether that argument will be used to receive data from, or
return data to, the calling procedure, or both.

One way to apply the attribute to a dummy array in the INTENT statement:

SUBROUTINE SUB4( A,B,C )
REAL A(100,100), B(100,100), C(100,100)

INTENT(OUT) :: A ! A values will only be written out
INTENT(IN) :: B ! B values will only be read in
INTENT(INOUT) :: C ! C values will be both read and written

If the INTENT statement indicates that the dummy argument need not receive data from the
calling procedure, then the system will not copy in the values of the actual argument. If the
INTENT statement indicates that the dummy need not return data to the calling procedure,
then the system will not copy values back into the original array.

Alternatively, the INTENT attribute can be applied to a dummy array in a Fortran 90 attrib-
uted type declaration:

SUBROUTINE SUB5( D,E,F )
REAL, ARRAY(100,100), INTENT(IN) :: D,E
REAL, ARRAY(100,100), INTENT(OUT) :: F

Since the calling procedure needs this information about the intended use of the dummy
argument, you must provide an interface block when specifying an INTENT attribute, and
the interface block must contain the INTENT statement or attribute declaration. Without an
interface block, the INTENT statement or attribute has no effect.

5.4.3 Example of INTENT

Imagine that a main game-playing program does not initialize an array, but instead simply
passes half the array to subroutine SORT to be initialized. If the dummy array in the subrou-
tine has the attribute INTENT (OUT), the system will not bother to copy in the values from
the original array, but it will copy the sorted values back out to the original array:
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INTEGER TOKENS(100)

INTERFACE

SUBROUTINE SORT( ARRAY

INTEGER ARRAY(50)

INTENT(OUT) :: ARRAY

END INTERFACE

! Interface block required

CALL SORT( TOKENS(1:50) )

END

SUBROUTINE SORT( ARRAY )
INTEGER ARRAY(50)

INTENT(OUT) :: ARRAY

Subroutine PLAY, on the other hand, needs to receive the values of the sorted tokens and
pass the values back to the main program so that they can be passed on to subroutine DIS-
PLAY. Thus, PLAY can give the dummy argument the attribute INTENT (INOUT), although
the effect on copying behavior is the same as specifying no INTENT attribute.

Finally, subroutine DISPLAY needs to receive the values as computed by PLAY, but it need
not store the final state of the tokens back into the original array. This subroutine therefore
gives the array the attribute ITENT (IN):

INTEGER TOKENS (100)

INTERFACE

SUBROUTINE DISPLAY( ARRAY)

INTEGER ARRAY (50)

INTENT(IN) :: ARRAY

END INTERFACE

! Interface block required

CALL DISPLAY( TOKENS(1:50)

END

SUBROUTINE DISPLAY( ARRAY )

INTEGER ARRAY (50)

INTENT(IN) :: ARRAY
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5.5 Retrieving Array Properties

CM Fortran provides a number of intrinsic functions that inquire about the size, shape, or
bounds of an array or one of its dimensions. These functions are DSIZE, DSHAPE, RANK,

DUBOUND, and DLBOtND.

For convenience, the following examples illustrate these functions in relation to arrays
whose shapes are declared-a rather pointless exercise. These functions are particularly
useful in relation to adjustable dummy array arguments, assumed-shape arrays, and auto-
matic arrays-that is, arrays whose size and shape are not established until run time.

Unlike other CM Fortran intrinsic functions, these inquiry functions can operate on front-
end arrays as well as CM arrays.

5.5.1 Array Shape

The function DSHAPE takes an array (or section) and returns a vector whose elements are
the lengths of the array's dimensions. The result is returned on the front end (regardless of ,'
the home of the argument array). For example: ,

REAL, ARRAY (5,10) :: A

PRINT *, DSHAPE( A ) ! Prints [ 5,10 
PRINT *, DSHAPE( A(3,:) ) ! Prints [ 10 1

DSHAPE is useful when retrieving the properties of adjustable and assumed-shape arrays;
it cannot be used with assumed-size arrays. Alone among the inquiry functions, DSHAPE

can also take a scalar argument. In this case, the value returned is an array of size zero (not
the scalar zero).

5.5.2 Array Size

The function DSIZE takes an array and an optional dimension argument. It returns a scalar
that is the number of elements in the whole array (or section) or in the specified dimension.
For example:
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REAL, ARRAY (5,10) :: A

PRINT *, DSIZE( A )
PRINT *, DSIZE( A(3,:) )

PRINT *, DSIZE( A, DIM=1 )

! Prints 50
! Prints 10

! Prints 5

If the argument is an assumed-size array, DSIZE cannot retrieve the size of the last dimen-
sion-or, therefore, the size of the whole array. For assumed-size arrays, the dimension
argument must be supplied and it must not be the last dimension. For example:

REAL, ARRAY (5,*) :: B

PRINT *, DSIZE( B, DIM=1 )

PRINT *, DSIZE( B, DIM=2 )

PRINT *, DSIZE( B )

! Prints 5

! Not supported

! Not supported

5.5.3 Dimension Bounds

The functions DUBOMMN and DLBOmmD take an array and return, as a front-end vector, all
its upper or lower bounds. For example:

REAL, ARRAY (5,10) :: A

REAL, ARRAY (-10:100, 20:50) :: C

PRINT *, DUBOUND( A )

PRINT *, DLBOUND( A )

PRINT *, DLBOUND( C )

PRINT *, DUBOUND( C(-10:0,:) )

! Prints [ 5,10 ]

! Prints [ 1,1 
! Prints [ -10,20 ]

! Prints [ 0,50 

If the dimension argument is supplied, these functions return a scalar that is the requested
bound of that dimension:

REAL, ARRAY (-10:100, 20:50) :: C

PRINT *, DUBOUND( C, DIM=1 ) ! Prints 100

PRINT *, DLBOUND( C, DIM=2 ) ! Prints 20
PRINT *, DLBOUND( C(40:,:40), DIM=1)! Prints 40

9
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If the argument is an assumed-size array, DUBOUND cannot retrieve the upper bound of the
last dimension-or, therefore, those of the whole array. For assumed-size arrays, the
dimension argument must be supplied and it must not be the last dimension. For example:

REAL, ARRAY (5,*) :: B

PRINT *, DUBOUND( B, DIM=1 )

PRINT , DUBOUND( B, DIM=2 )

PRINT *, DUBOUND( B )

! Prints 5

! Not supported

! Not supported

5.5.4 Inquiry Example

All the inquiry intrinsic functions can be used in specification statements as well as in

executable statements.The function DUBOUND is particularly useful for finding the upper
bounds of an assumed-shape dummy array. This information can be used to declare an
automatic (temporary) array that conforms to the dummy array:

SUBROUTINE SUB7( A )
REAL A(:,:)

REAL TEMP( DUBOUND( A,1 ), DUBOUND( A,2 ))

TEMP=A ! Automatic TEMP and dummy A are CM arrays

The two arrays in this subroutine would be taken by the compiler to be CM arrays even if
they weren't used in an array assignment. Array A is a CM array because it is assumed-

shape; array TMP is a CM array because it is automatic. The actual argument passed in at
run time as the A argument must be established as a CM array in the calling routine.

5.6 Array-Valued Functions

All the considerations that this chapter describes for defining and invoking subroutines
apply also to user-defined functions (with certain temporary restrictions noted here).

When a function takes CM array arguments, its returned value can be defined as either a
scalar or an array. An example of a function that returns a scalar is:
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INTEGER FUNCTION AVERAGE( ARRAY )

INTEGER ARRAY (:)

AVERAGE = SUM( ARRAY ) / DSIZE( ARRAY )
END

The argument passed to this function must be a CM array. The dummy ARRAY is assumed-
shape and is passed as an argument to the intrinsic reduction function sou Either of these
factors would be sufficient to cause the dummy to be a CM array. The functions suM and
DSIZE return their scalar results to the front end, and the division operation executes on
the front end.

User-defined functions that return arrays are somewhat restricted in Version 1.0, compared
with subroutines and with functions that return scalars. The shape of the returned array
must be known at compile time (that is, it must be constant), and the function body must
use the array in a Fortran 90 construction to force it onto the CM. In addition, the program
unit that invokes the function must include an interface block for the function (as described
in Section 5.3.3).

Note that the behavior of an array-valued function is like that of a subroutine that takes an
array as its first argument and stores its results there. To avoid the current restrictions on
array-valued functions, you could write the procedures as subroutines instead.

5.7 Common Arrays

CM Fortran allows any array to be placed in a common block, either on the CM or on the
front-end computer, and then be shared by program units. However, the homes of common
arrays are determined differently from those of local arrays, and the homes constrain the
ways in which the arrays can be used. It is not possible to allocate a given common block
on both machines.

5.7.1 Common Array Homes

The homes of common arrays are determined in the specification part of the program-not
by how the arrays are used. Programmers must take care that the use made of a particular
common array in every program unit is appropriate to its home:
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* A common array that is allocated on the front-end computer cannot be used in an
array operation.

* A common array that is allocated on the CM can be referenced in the Fortran 77
manner (with scalar subscripts rather than triplet subscripts), but the operation is

likely to be very slow as the system copies the array values one at a time between
machines.

The utility routines CF E ARRAY FRO. CM and CF FE ARRAY TO CM can

perform a faster bulk data transfer for those cases where it is necessary to use a CM

common array in a serial operation. (See the CM Fortran User s Guide for infor-

mation on utility routines.)

* A common array that is allocated on the CM cannot be used by a program unit or
library procedure that was compiled by a foreign compiler.

All common arrays retain their values when control passes from one program unit to the
next.

5.7.2 Declaring Common Arrays

Like local arrays, common arrays can be declared either with Fortran 77 syntax or with
Fortran 90 attributed type declarations (as described in Chapter 3), with no difference in

the semantics of the specification. CM common arrays must be declared in the main pro-

gram, as well as in any subprogram that uses them.

Any array (or scalar) can be placed in a block of common storage by means of the COMMON

statement:

COMMON [ /block-name/ ] var-list

Unlike local arrays, common arrays are allocated by default on the CM. The home then
determines the permissible uses of the common array, rather than vice versa. This section
describes the various methods of overriding the default CM allocation of common arrays.

Character Type and LAYOUT Directive

A common array is allocated on the front end if it is of type character or if it is constrained
to a front-end home by the compiler directive LAYouT or ALIGN. The LAYOUT directive
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was introduced in Section 5.2.2 above and is described in Chapter 9, along with ALIGN. All
the following arrays are allocated on the front end and cannot be used in array operations:

CHARACTER A
REAL, ARRAY(100,100) :: B,C

CMF$ LAYOUT B(:SERIAL, :SERIAL)

CMF$ ALIGN C(I,J) WITH B(I,J)

! Character type is FE only

! Layout places B on FE

! C has same home as B

COMMON /BLOCK_1/ A(10),B,C ! 3 arrays in FE common block

COMMON Directive

The compiler directive COMMON can specify the home of a common block by designating
the block as FEONLY or ChONLY. Both the following arrays are allocated on the front end
and cannot be used in array operations:

REAL, ARRAY(100,100) :: D,E

COMMON /BLOCK_2/ D,E

CMF$ COMMON FEONLY /block_2/

! Would default to CM, but...

! COMMON overrides default home

The cowmON directive has no effect on an array's home if the home is already constrained
by LAYOUT or ALIGN or if the array is of type character.

Compiler Switches

The CM Fortran compiler switch -fecommon places common blocks on the front end,
overriding the default placement of common blocks on the CM. This switch does not affect
arrays that are constrained to a CM home by the directives LAYOUT, ALIGN, or COMMON.

Another compiler switch, -nodirectives, disables all the compiler directives in the
program. Using this switch causes all arrays and common blocks to revert to their default
homes: character arrays (as always) to the front end, all non-character common arrays to
the CM, and all non-character local arrays to one machine or the other depending on how
they are used. This switch should be used with care, since, in possibly changing array
homes, it can cause valid programs to fail.

9
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5.7.3 Initializing Common Arrays

The initialization techniques described in Chapter 3 for local arrays apply also to common
arrays: any array, front-end or CM, local or common, can be initialized by means of a DATA

statement or a DATA attribute associated with an array constructor in the type declaration.

However, some special actions are needed to initialize a CM common array "statically,"
that is, with a DATA statement or attribute. In fact, there is no static initialization of CM
arrays, since CM space is not allocated until run time. When the system encounters a DATA

statement or attribute for a CM array, it places the values in front-end storage and moves
them to the CM at program start-up.

For local arrays, this action happens transparently; the programmer need only ensure that
there is adequate front-end space available for storing the CM values. For common arrays,
however, the programmer must do the following to ensure that the necessary storage is
allocated on the front end:

· Name all common blocks that contain statically initialized CM arrays. This step is
a prerequisite to the second step.

* Initialize CM common arrays in a BLOCK DATA program unit. As with all common
arrays, the DATA statement or attribute that initializes a CM common array cannot
appear in a main program or external procedure.

• Indicate to the compiler that CM common arrays will be statically initialized. This
can be done either with the compiler switch -common_initialized or with
another form of the compiler directive coMMON:

CMF$ COMMON INITIALIZED /block-name/

This form of the COMMON directive indicates that the common block is to reside on
the CM (the default home in any case) and that front-end storage is to be allocated
for its initial values.

The COMMON directive indicating that a CM common array is initialized must
appear in the BLOCK DATA program unit and in all program units where the array
is used. See the following page for an example.
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PROGRAM CMDATA
REAL A(1024)

COMMON /CMBLK/ A

CMF$ COMMON INITIALIZED /CMBLK/

PRINT *, A(1)

STOP

END

BLOCK DATA

REAL A(1024)

CMF$ COMMON INITIALIZED /CMBLK/

COMMON /CMBLK/ A

DATA A/1024*0.2/

END
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Data Movement
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CM Fortran, like Fortran 90, provides new syntax and intrinsic functions for rearranging
the elements of arrays. Dimensional shifts, permutations, and transpositions of array ele-
ments all require interprocessor communication on the Connection Machine system.

The features that enable the program to specify interprocessor data movement explicitly
are:

* Array sections

* Vector-valued subscripts

* The intrinsic functions CSHIFT, EOSHIFT, and TRANSPOSE

Other intrinsic functions perform data movement implicitly in the course of some other
kind of array transformation. These functions are presented in Chapter 7.

6.1 Array Sections

The discussion of array sections (Section 4.2.2) mentioned some cases where implicit data
movement occurs in the course of an operation, such as expressions involving array sec-
tions from nonconformable parent arrays. This section focuses on using array sections

deliberately to reposition the values of arrays.
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6.1.1 Dimensional Shifts

Array sections, in conjunction with assignments, are useful for moving data in regular grid
patterns. An example is a "dimensional shift," where element values are all shifted some

number of positions along an array dimension. The following assignment statement shifts

the elements of a 10-element vector A by one position:

A(1:9) = A(2:10)

as illustrated by:

A(2:10)

/ /

Z A(1:9)

Notice that-as with any array assignment-the two array sections must be conformable.
Thus, a number of elements at least equal to the shift offset must be excluded from the
computation. In this example, a section that excludes the first element of the parent array 
is assigned to a section that excludes the last element.

Extending this example to a 2-dimensional array is straightforward. Suppose that B is a

5 x 3 matrix and you want to shift by two positions on the first dimension:

B(1:3, :) = B(3:5, :)

as illustrated by:

B(1:3, :) B(3:5, :)

};1g 
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Similarly, to shift along more than one dimension at a time:

B(1:3, 2:3) = B(3:5, 1:2).

as illustrated by:

B(1:3, 2:3) B(3:5, 1:2)

6.1.2 Shifting Noncontiguous Sections

Specifying a stride greater than 1 yields a noncontiguous array section, but the mechanics
of shifting element values along a dimension are the same. For example, this statement
copies the values from the even columns of a 3 x 6 array C into the elements in the odd
columns in each row.

C(:, 1:5:2) = C (:, 2:6:2)

as illustrated by:

C(:, 2:6:2)

Li//#1
E l I i~ E~*'**~

C(:, 1:5:2)
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The before-and-after values in C might be:

1 2 3 4 5 6 2
C= 1 2 3 4 5 6 > C= 2

1 3 1 3 1 3 3

2 4 4 6 6

3 3 3 3 3

6.1.3 Efficiency Note

Some dimensional shifts use the CM's NEWS communication network, which optimizes
the special case of grid communication for speed. Generally speaking, the compiler gener-
ates NEWS instructions if the parent arrays of the sections are conformable (or are the same
array, as in the examples shown) and if shift offset can be broken into a few power-of-2
distances. Otherwise, the compiler uses the more general (and therefore slower) router
communication network.

6.1.4 Permutations

Array sections can be used for data motion other than dimensional shifts by mixing positive
and negative strides or by mixing unequal strides in the assignment statement. For exam-
ple, to reverse the elements of a 10-element vector D:

D = D(10:1:-1)

Similarly, to reverse the columns of values in an n x 6 matrix E:

E = E(:, 6:1:-1)

And, to replace the left half of E with the values in the even columns:

E(:, 1:3) = E(:, 2:6:2)

The CM system cannot use NEWS communication in cases where the data motion specified
is not a dimensional shift. In the examples shown here, the values move different distances
to reach their destination positions (processors). Any data motion where the pattern of
movement is not the same for all selected elements must use the router communication
network.

iI 1
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6.2 Vector-Valued Subscripts

A special form of array section uses a vector-valued subscript, an integer vector that serves
as a sequence of index values in an array reference. Since the index vector need not be
ordered-that is, there is no fixed stride-this syntax permits an arbitrary selection of array
values along a dimension. A vector-valued subscript is essentially an indirection vector; it
is particularly useful for mapping unstructured problems onto a rectangular grid.

Like other array sections, array sections specified with vector-valued subscripts can be
used in conjunction with assignment statements to perform data movement. This facility
always uses the router communication network It is thus one of the more general but not
the fastest of CM Fortran features.

6.2.1 Examples

If A is a vector of length 10 and v is the vector [1,3,4],
whose elements are A(1) , A(3), and A(4).

A X 

then A (V) is a vector of length 3

I I I I l I

Similarly, if R is the vector [2,6,4,8], then A (R) is
are A(2), A(6), A(4), and A(8) .

a vector of length 4 whose elements

A

Array sections specified with vector-valued subscripts always involve data movement,
even in the absence of a statement assigning the values to different positions. That is, the
system creates a temporary array of the same length as the index vector and moves the
specified values of the parent array into the temporary before performing any operation on
them. (Because the indices are not necessarily in their natural order, the system cannot sim-
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ply deactivate the processors whose indices are excluded, as it does with array sections.)
As a result, even a statement like the following requires the use of router communication:

A(V) = A(V) + 1

Vector-valued subscripts can be intermixed in a reference with triplet subscripts and scalar

subscripts. For example, given a 3 x 5 array B and the vector v = [1,4,3], then B ( :, V)

specifies a 2-dimensional array section that consists of the first, fourth, and third columns
of B, in that order:

B

B(: ,V)

The section B (2,v) specifies
fourth, and third values in the

a 1-dimensional section of length 3 consisting of the first,
second row of B.

B

B(2,V)

Notice that the rank of an array section equals the number of dimensions that are specified
with either triplet subscripts or vector-valued subscripts, not counting any dimensions that

are specified with scalar subscripts. Thus, B (: ,v) in this example is smaller than the par-
ent array B but still 2-dimensional. The section B (2 ,v), however, has only one Fortran
90-style subscript and is therefore 1-dimensional.
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6.2.2 Permutations

One use of vector-valued subscripts is to rearrange array elements. For example, if A and
B are 10-element vectors, and vector P is a permutation of the numbers 1 to 10, the state-
ment

A = B(P)

rearranges the values of B according to the permutation specified by P and assigns them
to A These actions are equivalent to the following Fortran 77 operation:

DO 30 I = 1,10
A(I) = B( P(I)

30 CONTINUE

6.2.3 Assigning Permuted Sections

Like any array object, a section specified with a vector-valued subscript must be conform-
able with other array objects used in the same expression or in an assignment.

Thus, when the index vector is on the right-hand side of an assignment statement, it must
be conformable with the destination array on the left. The source array can be any size or
shape, since the index vector is specifying a section of the source array that is appropriately
shaped for the assignment.

For example, assume the following vectors:

SOURCE = [ 10, 20, 30, 40, 50, 60, 70 ]
INDEX = [ 3, 1, 4, 6 ]

Executing the statement

DEST = SOURCE (INDEX)

assigns the following values to DEST:

DEST = [ 30, 10, 40, 60 ]
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Similarly, when the index vector is on the left, as in the statement

DEST_2 (INDEX_2) = SOURCE_2

the index vector must be conformable with the source array. The destination array can be

any size or shape, since the index vector is specifying a section of it that is appropriate for
the assignment.

6.2.4 Replicating Data

Vector-valued subscripts can go beyond simply rearranging data, since an index number
may appear more than once in the index vector (as long as the vector appears on the right-
hand side of the assignment). For example, assume the following vectors:

SOURCE_3 = [ 15, 20, 25, 30, 35, 40, 45 
INDEX_3 = [ 3, 1, 4, 4 

Notice that index 4 is specified twice in the index vector. Executing the statement

DEST 3 = SOURCE 3(INDEX 3)

assigns the following values to DEST_3:

[ 25, 15, 30, 30 

The index numbers may not be replicated when the index vector appears on the left-hand
side of an assignment, since the language does not define the effect of assigning more than
one value to an array element.
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6.3 Intrinsic Shift Functions

CM Fortran provides two intrinsic functions for shifting array elements in regular patterns
along array dimensions. Their actions differ from the dimensional shifts performed with
array sections in that the functions deal with the boundary elements.

* CSHIFT, for "circular shift," causes values that move off the edge of the array to
reappear at the opposite edge.

CSHIFT( ARRAY, DIM, SHIFT )

* EOSHIFT, for "end-off shift," discards values that move off the edge of the array
and moves some specified or default value into the positions vacated at the oppo-
site edge.

EOSHIFT( ARRAY, DIM, SHIFT , BOUNDARY] )

6.3.1 Using CSHIFT

Given a 3 x 5 array A, the statement

A = CSHIFT( A, DIM=2, SHIFT=-1 )

shifts the values in the second dimension of A (which you can picture as the columns, or
as the values in the rows) by one column position in the negative direction, wrapping the
right-most values around to the first column.

1 2 3 4 5

A= 1 2 3 4 5
1 2 3 4 5

5 1 2 3 4

A = 5 1 2 3 4

5 1 2 3 4

The negative direction-meaning that element A (I ,J) gets the value of A (I, J-1) -is
described here as "shifting to the right." An alternative view of the same action is that each
element gets the value of its neighbor to the left, with wrapping at the edge.

(Notice in the above example that CM Fortran supports the use of predefined keywords in
intrinsic function calls. )
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Calls to CSHIFT can be nested to access diagonal neighbors. For example, to have each
element of a matrix get the sum of its four diagonal neighbors:

A = CSHIFT( CSHIFT( A,1,1 ),
$ CSHIFT( CSHIFT( A,1,1 ),

$ CSHIFT( CSHIFT( A,1,-l ),

$ CSHIFT( CSHIFT( A,1,-l ),

2, 1)

2, -1)

2, 1)

2, -1)

+
+
+

The SHIFT argument to CSaIFT can also be an array, indicating a possibly different shift
distance for each row or column of the argument array. The SHIFT array must be of rank
one less than the argument array. For 2-dimensional argument arrays, the SHIFT argument
can be any vector, including an array constructor (see Chapter 3). For example, if B is a
2-dimensional array, then

B = CSHIFT( B, DIM=2, SHIFT=[1,2,3] )

has the following effect on B:

-1 2 3 4 -2 3 4 1

B = 1 2 3 4 > B= 3 4 1 2

1 2 3 4 4 1 2 312 4] [23
(shift by 1)

(shift by 2)

(shift by 3)

The DIM argument to CSHIFT can be either a constant expression or a variable-as long
as SHIFT is a scalar. If SHIFT is an array, however, DIM must be a constant expression.

For example, all the following combinations of constant and variable DIM arguments and
scalar and array SHIFT arguments are supported:

A = CSHIFT( A,

A = CSHIFT( A,

A = CSHIFT( A,

DIM=2, SHIFT=1 )

DIM=J, SHIFT=1 )

DIM=2, SHIFT=[1,2,3] )

The illegal combination is variable DIM with array SHIFT:

A = CSHIFT( A, DIM=J, SHIFT=[1,2,3] ) ! Not supported
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6.3.2 Using EOSHIFT

EOSHIFT is similar to CSHIFT except for its treatment of boundary elements. This function
takes an optional BOUNDARY argument that specifies the value to move into the elements
that are vacated by the shift operation. The default is zero or . FALSE., depending on the
type of array.

6.4 The TRANSPOSE Function

The intrinsic function TRANSPOSE transposes the axes of a matrix, creating a matrix of
shape (M, N) from an argument matrix of shape (N,M). For example,

MATRIX 2 = TRANSPOSE( MATRIX 1

has the following effect when MATRIX_1 is 4 x 3:

1 2 3
1 2 3

1 2 31 2 3 

1 1

2 2

3 3

iil]
If the argument matrix is a square, the effect is to flip its values over the diagonal. For
example, calling TRANSPOSE on a 4 x 4 matrix has the following effect:

0

2

2

2

0 1 1

2 0 1
2 2 0

0 2 2

4> 1 0 2
1 1 0

1 1 1

2

2

2

0 ]

Notice that the TRANSPOSE function moves the various element values different distances
and directions. To perform this pattern of data movement the system necessarily uses the
router communication network. The TRANSPOSE function therefore does not execute as
fast as the dimensional shifts shown above; its speed is comparable to that of permutations.

Version 1.0, January 1991

Chapter 6 Data Movement 77

1 1

C> 2 2
-3 3



I

f

f



Chapter 7

Array Transformations

CM Fortran defines a rich set of intrinsic functions for manipulating and transforming
arrays and inquiring about their properties. Three categories of intrinsic functions have
already been introduced:

* Elemental functions (Chapter 2), which apply Fortran 77 numeric and mathemati-
cal operations to all the elements of array arguments (as well as to scalars)

* Inquiry functions (Chapter 5), which return information about an array (CM or
front-end), such as its size or shape

* Movement functions (Chapter 6), which reposition the elements of a CM array by
performing a dimensional shift or a matrix transposition

The other categories of array-related intrinsic fnctions are introduced in this chapter.
These are:

* Array reduction functions, which take an array and summarize it by applying some
combining operation over its values

* Element location functions, which determine the location (subscripts) of particular
elements such as the maximum or minimum value

* Array construction functions, which construct a new array from information con-
tained in one or more argument arrays

* Array multiplication functions, which include DOTPRODUCT and MATMNL

All the CM Fortran movement, reduction, location, construction, and array multiplication
intrinsic functions operate only on array objects (CM arrays or array sections referenced
in the Fortran 90 manner).
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7.1 Array Reduction

The array reduction functions take an array and "summarize" it by applying some combin-
ing operation across its elements. Each of the reduction functions may be applied either to
an array object (whole array or section) or to a single dimension of an array object The
result may be a scalar or an array, depending on the arguments.

The numeric reduction fimctions are MuAxvA, MINVAL, SuN, and PRODUCT. The logical
reduction functions are ANz, ALL, and COUNT.

7.1.1 The ARRAY Argument

As an example of the numeric reduction functions, consider the action of MAXVAL on the
2-dimensional array A:

MAXVAL( ARRAY t, DIM] [, MASK] )

1 5 3 7
A= 4 2 6 3

9 2 1 5

When the function is applied to the whole array or to a section,
is returned to the front end:

I = MAXVAL( A )

J = MAXVAL( A(:,2:3) )

the result is a scalar and

! I =9

!J=6

If the optional dimension argument is supplied, the result is an array with one fewer dimen-
sion than the argument array. The array result of a reduction function is a CM array.

K = MAXVAL( A, DIM=1 )

L = MAXVAL( A(:,2:3), DIM=2 )

! K = [ 9,5,6,7 

! L = [ 5,6,2 ]

,
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7.1.2 The MASK Argument

The numeric reduction functions (AXVAx, MINVAL, Sn4, PRODUCT) take an optional mAsi
argument indicating which elements to include in computing the summary result. The mask

must be a logical array or array-valued expression of the same shape as the argument array.
For example, to find the highest value in A that is not greater than 8:

I = MAXVAL( A, MASK = A .LE. 8 ) ! I = 7

Similarly, if array B is
. FALSE. ):

1 5

A= 4 2

9 2

specified as a mask for A (T indicates .TRuE. and a dot indicates

B= [ T

T T

T T

Then,

J = MAXVA( A, MASK=B ) ! J= 7

K = MAXVAL( A, DIM=1, MASK=B ) ! K = [ 4,5,1,7 

Notice that if the ARRAY argument is an array section, then the mask must conform to the
section:

L = MAXVAL( A(:,2:3), MASK = B(:,2:3) ) ! L = 5

M = MAXVAL( A(:,2:3), MASK = A(:,2:3).LE.5 ) ! M = 5
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7.1.3 Logical Arrays

The logical reduction functions (AMY, ALL, couNT) take a logical array (identified with the
keyword MASK) and an optional DIM argument and work with the elements that are . TRUE.

LOGICAL-REDUCTION-FUNCTION ( MASK . , DIM] )

For example, consider the logical array C:

C= t T T

T · T

ANY returns the scalar value T if any of the elements in the array (or section) is true. If a
dimension is specified, the result is a front-end array of rank one less than the argument
array:

X = ANY( MASK=C )
XX = ANY( MASK=C, DIM=2 )
XXX = ANY( MASK=C(:,1:3), DIM=1 )

! X =T
! XX = [ T,T,T 
! XXX = [ F,T,F ]

ALL returns T only if all the elements in the array or on the specified dimension are true:

Y = ALL( MASK=C )
YY = ALL( MASK=C, DIM=1 )
YYY = ALL( MASK=C(:,2:4:2)

! Y =F
! YY = [ F,T,F,T ]
! YYY = T

COUNT returns the number of true elements in the array or on the specified dimension:

Z = COUNT( MASK=C(:,4) )
ZZ = COUNT( MASK=C(:,2:4:2) )
ZZZ = COUNT( MASK=C(1:2,:) DIM=1)

! Z =3
! ZZ = 6

! ZZZ = [ 0,2,0,2 ]

'
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7.2 Element Location

The location functions determine the location in an array of certain element values. The
numeric location functions are MAXLOC and MNLOC; the logical location functions are
FIRSTLOC and LASTLOC, referring to the first and last true elements in array-index order.
A related function, PROJECT, determines the value of a numeric array element that corre-
sponds to the first true element of a mask (logical) array.

7.2.1 Numeric Arrays

MAXLOC and xIm:oc determine the array indices of the maximum or minimum value in a
numeric array (or section). These functions return a vector whose elements are the array
indices of the value in question. (Notice that the result vector's length therefore equals the
rank-of the argument array.) The result vector resides on the CM.

NUMERIC-LOCATION-FUNCTION ( ARRAY [, MASK] )

For example, consider the effect of the location functions on a 2-dimensional array A:

A= 4 2 6 3
9 2 1 5

the numeric location functions behave as follows:

I = MAXLOC( A )

J = MINLOC( A(:,1:2) )

!I = [ 3,1 ]

! J = [ 1,1]

When the argument is an array section, as in the second line above, the indices returned
refer to the section, not to the parent array. This becomes more obvious when the section
is not taken from the origin of the array:

K = MAXLOC( A(:,3:4) )

L = MINLOC( A(:,3:4) )

! K = [ 1,2 ]

! L = [ 3,1 ]
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Special Cases

If more than one element value meets the condition, the one chosen is unpredictable. For
example, the array A above has two instances of the value 1. Thus:

K = MINLOC( A ) ! K = [ 1,1 OR K = [ 3,3 ]

If the argument array is only one dimension, the result is a CM vector of
scalar value):

L = MINLOC( A(:,3) )

length 1 (not a

! L= [ 1 ]

No DIM Argument

The numeric location functions do not take a dimension argument. The element located is
always a maximum or minimum of the whole array or section.

MASK Argument

The numeric location functions can take a MASK argument to indicate which values are
candidates. The mask is a logical array or array-valued expression that conforms to the
argument array. For example:

I = MAXLOC( A, MASK=A.LT.7 )

J = MINLOC( A(:,2:3), MASK=A(:,2:3).GE.3 )

! I = [ 2,3 

J = [ 1,2 ]

Similarly, if array B is specified as a mask for A:

A= 4 2 6 3

9 2 1 5

B = T

T T

T T

T T 

K = MAXLOC( A, MASK=B ) ! K = [ 1,4 

L = MAXLOC( A(:,1:2), MASK=B(:,1:2) ) ! L = [ 1,2 ]

Then,

91
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7.2.2 Logical Arrays

Unlike the numeric location functions, the logical location functions do not return a set of
indices. Instead, the functions FIRSTLOC and LASTLOC take a logical array and return a
logical array of the same shape with at most one true element. The one true element is in
the location of the first (or last) true element of the argument array in array-index order. If
the argument array contains no true values, the result array is also all false.

LOGICAL-LOCATION-FUNCTION( ARRAY [, DIM]

For example,

B = FIRSTLOC( A )

assigns the following array to B given the values shown in A:

T T

A= * T -
* * T _

Similarly,

C = LASTLOC( A )

assigns the following array to C given the values shown in A:

T T

A = * T *-
. . * T

If the argument array is a section of A,

D = LASTLOC( A(:,1:3) )

the result is an array that conforms to the section:

T T

T

A=[. ~ D=[. .T
C-1> D = . .

> C4=[
I.
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DIM Argument

FIRSTLOC and LASTLOC can take an optional dimension argument, in which case the
result array locates the first true element in each row, column, etc., of the specified dimen-
sion. For example,

E = FIRSTLOC( A, DIM=1 )

creates the following array E given the values shown in A:

T T

T

A # T T

A = * T 

- .. T]

E=

Similarly,

F = LASTLOC( A, DIM=2 )

creates the following array F given the values shown in A:

T ]

T T
*T

T T

A = · T

T

F =[

7.2.3 Element Location Example

Location functions can be used, in combination with a numeric reduction function, to
locate the first of multiple instances of the maximum or minimum value of a numeric array.
(Recall that the numeric location functions make an arbitrary choice among multiple
instances of a maximum or minimum value.)

For example, for an array A of any rank, the following line computes the indices of the first
minimum. The mask is a logical array with the value. TRUE. at the first location where the
value of A equals the minimum value of A and .FALSE. elsewhere. The function MINLOC
then returns the array index or indices of that position:
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LOC1 = MINLOC( A, MASK = FIRSTLOC( A .EQ. MINVAL(A) ))

The location functions are general-purpose procedures that are not particularly fast. For
some special cases, it is possible to determine element location without using these func-
tions. For example, in the special case of a 1-dimensional array, an array constructor of the
same length as the array of interest serves as the array argument:

LOC2 = MINVAL( [1:M], MASK = V .EQ. MINVAL(V) )

Notice that the array constructor [1 :Ml used as the argument array represents the indices
of vector V. The outer call to MINVAL returns the lowest index where the value of V equals
the minimum value of V.

A notable difference between these two lines of code-besides their speed-is that in the
first, the variable LOCi is a CM vector of length equal to the rank of the argument array
A, whereas LOC2 in the second line is a scalar value residing on the front end. It is because
the array constructor argument can only be 1-dimensional and because the result is a scalar
that the second technique is useful only with vectors.

7.3 Array Construction

The array construction functions create new CM arrays from the information in existing
ones:

* RESHAPE takes an array and constructs a new array with the same elements but a
different shape.

* DIAGONAL takes a vector and constructs a matrix whose diagonal elements are
those of the vector and whose other ("fill") elements are all a specified or default
value.

* MERGE combines two conformable arrays into a new array by means of an element-
wise choice guided by a logical mask.

* PACK and UNPACK behave as gather and scatter operations. PACK gathers an n-
dimensional array into a vector; NPACK scatters a vector into an n-dimensional
array.
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REPLICATE and SPREAD construct arrays from a specified number of copies of the
argument array. SPREAD adds a new dimension to accommodate the copies; REP-
LICATE lengthens one of the existing dimensions.

This section introduces the array construction functions by illustrating the behavior of
RESHAPE, MERGE, and SPREAD. For more information about all these functions, please see
the CM Fortran Reference Manual.

7.3.1 Reshaping an Array

With the CM system's distributed memory, reshaping arrays is not as routine a practice as
it is with linear memory machines. As mentioned in Chapter 2, reshaping a single large
array should not be used as a substitute for separate declarations of smaller arrays, each in
the shape needed. On the CM system, reshaping entails actual data movement-most often
with the router communication network-rather than a substitution of indices.

Array reshaping in CM Fortran is useful when the algorithm requires manipulating the
same set of data in more than one shape. The intrinsic function RESHAPE creates a new
array with the same elements as the argument array, but with a different shape and perhaps
a different size. Its format is:

RESHAPE( MOLD, SOURCE , PAD] [, ORDER] )

The Target Array

The MOLD argument specifies the target shape; it is a vector of positive integers, each indi-
cating the extent of a target dimension. (Since each vector element corresponds to an array
dimension, the vector's length is limited to 7.) For example, the following calls reshape a
matrix A(100,100) in various ways:

B = RESHAPE( [ 10000 ], A ) ! One dimension

C = RESHAPE( [ 10,10,100 , A ) ! Three dimensions

D = RESHAPE( [ 10,10,10,10 , A ) ! Four dimensions

Unless the call specifies otherwise, the source array elements are placed in the target array
in array-index order. For example, the call

X = RESHAPE( [3,4], SOURCE=[1:12] )
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places the following values in the 3 x 4 array X:

1

X = 2
3

4 7 1'0

5 8 11

6 9 12 ]

Any source array values that do not fit into the mold are ignored. For example, the result
array X in the above example would be the same if SOURCE had been [1: 201.

Padding the Target Array

If the source array is smaller than the mold, the call must include the PAD argument. PAD
is an array of the same type as soURCE and any size or shape. When the source array ele-
ments are used up, the system uses one or more copies of the pad array elements (in
array-index order) to fill the target array. For example:

Y = RESHAPE( [3,4], SOURCE=[1:5], PAD=[10: 12]

places the following values in the 3 x 4 array Y:

1

3

4 11

5 12
10 10

11
12

10ll]

The optional ORDER argument is used to change the order in which the target dimensions
are filled. The default order is the vector [l:n]; the alternative order for a 2-dimensional
mold would be [2,1], with the following effect:

Z = RESHAPE( [3,4], SOURCE=[1:5], PAD=[10:12], ORDER=[2,1] )

1

10

2

10
11

3 4

11 12

12 10
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7.3.2 Merging Arrays

The function MERGE constructs an array of the same shape as two conformable argument
arrays. It then fills the new array with values from one or the other of the source arrays,
depending on the corresponding value in a logical mask. Its format is:

MERGE( TSOURCE, FSOURCE, MASK )

For example, given two source arrays A and B and a logical array x

1 2 3 4 6 7 8 9 T T

A= 1 2 3 4 B= 6 7 8 9 M L T · T

1 2 3 4 6 7 8 9 T · T

the following call yields the array C shown:

C = MERGE( TSOURCE=A, FSOURCE=B, MASK=M )

C= 6 2 8 4

6 2 8 4

Alone among the transformational intrinsic functions, MERGE need not perform implicit
data motion. If its three conformable arguments and the destination array are whole arrays,
their corresponding elements are already lined up in the same set of virtual processors (un-
less the program specifies otherwise with a compiler directive). The behavior of MER is
the same as the behavior of a WEEmm construct (as described in Section 4.1.2):

WHERE ( M )
C = TSOURCE

ELSEWHERE

C = FSOURCE

END WHERE

If the arguments and the destination are array sections drawn from different parts of con-
formable parents or if they are sections drawn from any part of nonconformable parents,
the system must perform interprocessor data motion to align the corresponding elements
in the same set of virtual processors.
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7.3.3 Spreading an Array

SPREAD takes a source array and creates a new array with an additional dimension. It then

broadcasts a specified number of copies of the argument array along the specified dimen-

sion of the new array. Its format is:

SPREAD( SOURCE, DIM, NCOPIES )

For example, if the source array is the vector

A = [ 4, 2, 6, 3 ]

Then,

B = SPREAD( A, DIM=1, NCOPIES=3 )

replicates the values in A along the first dimension of a new 3 x 4 array. The value of B in
this assignment statement becomes:

4 2 6 3

B= 4 2 6 3

4 2 6 3 ]

Similarly, spreading three copies of the same source vector along the second dimension of

a new array

C = SPREAD( A, DIM=2, NCOPIES=3 )

results in assigning the following values to C:

4

2
C= 

6

3

4 4

2 2

6 6

3 3
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When the argument array is 2-dimensional, the result array is 3-dimensional. For example,
spreading two copies of B along the third dimension

D = SPREAD( B, DIM=3, NCOPIES=2 )

results in the following 3 x 4 x 2 array, assigned to D:

D = 4 2 6 3 1
4 2 6 3 :

4 2 6 3

7.4 Array Multiplication

The array multiplication functions are DOTPRODUCT for vectors and MnATMm for vectors or
matrices. For example, given two vectors such as the following array constructors, their
vector dot product is:

I = DOTPRODUCT( [ 1,2,3 , [ 2,3,4 ) ! I = 20

And, to compute the matrix-matrix product of two arrays, such as A and B,

A= [ 1 2 3
2 3 4 B = 2 3

3 4

the code and its effect are:

C = MATMUL( A,B )

C= 14 20
20 29

Many other mathematical procedures are provided as subroutines in the CM Scientific
Software Library. These are described in a separate volume.

Version 1.0, January 1991
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Chapter 8

The FORALL Statement

A FORALL statement describes a collection of assignments to designated array elements,
to be executed in undefined order but as if simultaneously. This elemental array assign-
ment is an extremely powerful way to express location-dependent action. It can be used for:

* Dynamically initializing arrays with sequences of values.

• Selecting subarrays, both by position and by value.

* Data motion in patterns that are otherwise difficult to express in CM Fortran as

parallel operations. These include parallelprefix (cumulative) computations along
array dimensions and certain operations on irregularly shaped data.

rORAL provides many of the same capabilities as DO constructs, including those with
nested Do's and those with embedded IF statements. However, since the individual assign-

ments occur in an undefined order, FORAx statements can be executed in parallel on the
CM.

Although not a part of the draft standard Fortran 90, FoRALL is included in CM Fortran
because of its particular expressive power. In some ways, roRAL is redundant with other
CM Fortran features, such as assignment of array sections specified with triplet notation

or vector-valued subscripts. However, FORAL is the only feature that can express certain
very efficient CM operations, such as parallel prefix operations.

After introducing the syntax of the FORA statement, this chapter examines its execution
model-particularly the significance of as ifsimultaneous execution-and concludes with
some examples of using FORA to express various patterns of data motion.
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8.1 Syntax

FORALL uses triplet notation to specify one or more sequences of integer values and associ-

ates each with a symbolic name. The names are then used in expressions in an assignment
statement, where they can indicate either array indices or values. The basic format is:

FOPRLL ( triplet-spec[s] ) assignment

For example, to seed the array IDENTITY (N) with "self-addresses," that is, to assign each
element its own index value:

FORALL ( I=1:N ) IDENTITY(I) = I

Similarly, to clear every tenth element of vector v (N):

FORALL ( I=1:N:10 ) V(I) = 0

In simple examples like these, FORALL is redundant with other CM Fortran features. These
statements can also be expressed as CM array assignments, using an array constructor in
the first case and a triplet subscript in the second:

IDENTITY = [ 1:N 

V( 1:N:10 ) = 0

However, FORALL is the feature of choice for more elaborate assignments, such as those
involving multidimensional arrays and combinations of symbolic names. For example, the
following statement initializes matrix I to contain a Hilbert matrix of size N:

FORALL ( I=1:N, J=1:N ) H(I,J) = 1.0 / REAL( I+J-1 )

Notice that the definition of the symbolic names in a FORALL statement resembles the defi-
nition of index variables in a DO construct. Where DO might define I as I=1,N, 10,

FORALL substitutes colons, I=1: N: 10. This chapter adopts the term index variable to refer
to a symbolic name defined in a FORAL triplet-spec.

Version 1.0, January 1991
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8.1.1 The FORALL Assignment

The assignment in a FORALL statement is the same as the assignment statement in a DO
construct. In CM Fortran, both DO and FORALL can assign individual array elements or
array objects (sections).

FORALL assignments have certain restrictions: no left-hand-side element can be assigned
more than one value, and, as with DO constructs, a function reference appearing anywhere
in the assignment must not alter the value of an index variable.

A FORALL statement can have only one assignment. That is, there is no block FoRAL con-
struct and no embedding of WHERE or other CM Fortran statements.

The Target Elements

The left-hand side of a FoRALL assignment uses the index variables to indicate the array
indices of interest. It can do so either with scalar subscripts in the Fortran 77 manner,

FORALL ( I=1:N, J=1:M ) A(I,J) = expression

or with triplet subscripts in the Fortran 90 manner,

FORALL ( K=1:N ) A(K,:) = expression

FORALL ( K=1:N ) A(1:K, K:1:-l) = expression

When the left-hand side is specified with scalar subscripts, the target of each assignment
is a single array element. When the left-hand side includes triplet subscripts, the target of
each assignment is an array section (as described in Chapter 4).

In either case, the left-hand side must use all the index variables defined in the statement;
array references without subscripts are not permitted. For example, the following assign-
ments to vector B are not legal, the first because no index variables appear on the left and
the second because J does not appear on the left:

FORALL ( I=1:N, J=1:M ) B = I+J ! Error

FORALL ( I=1:N, J=1:M ) B(I) = J ! Error

Version 1.0, January 1991
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As in a DO construct, the index variables can be used either as primary expressions or as
operands in an operation that specifies the target elements:

FORALL ( I=1:N, J=1:M ) C(I + J*2) = J

FORALL ( I=1:N, J=1:M ) C(:, (I + J*2)) = J

FORALL ( K=0:10 ) LOGS( 2**K:2**(K+1)-1 ) = K

The target elements specified need not constitute the whole array, of course. FORALL pro-
vides two ways to select a subarray by element position:

* By having the index variables refer to a sequence that covers only part of the corre-
sponding array dimension:

DIMENSION A(100,100)

FORALL (1=1:50, J=1:50) A(I,J) = 0 ! Clear one quadrant

FORALL (K=2:100:2, L=5:100:5) A(K,L) = 0 ! Selected elements

* By indicating an array section on the left-hand side of the assignment:

DIMENSION B(10,10)

FORALL (M=1:10) B(M,:) = M ! Self-index the first dim.

The Source Values

The right-hand side of a FORML assignment must provide no more than one value for each
element specified on the left. The set of permissible expressions varies depending on
whether the left-hand side is a series of single array elements (scalar subscripts) or a series
of array sections (triplet subscripts).

If the target elements are specified with scalar subscripts, the right-hand side must be a
scalar-valued expression. For example, given the three arrays shown, the following state-
ments assign a scalar value to each successive element of vector A:

£11
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DIMENSION A(N),B(N)

DIMENSION C(N,M)

FORALL

FORALL

FORALL

FORALL

FORALL

FORALL

(I=1:N)

(I=1:N)

(I=1:N)

(I=1:N)

(I=1:N)

(I=1 :N)

A(I)

A(I)

A(I)

A(I)

A(I)

A(I)

= 10 ! Constant expression

= I ! Scalar variable

= B(I) ! Array element

= SIN(I) ! Elemental (scalar) function

= SUM(C(I,:)) ! Scalar-valuedintrinsic

= FUNC(B(I)) ! Scalar-valued user func.

If, on the other hand, the left-hand side of a FORAAL assignment is specified with triplet
subscripts, the target of each assignment is an array section rather than an individual ele-
ment. In this case, the right-hand expression must conform to each of the target array
sections. Thus, the right-hand side can be either:

* Any of the scalar-valued expressions listed above. Recall that a scalar is replicated
to conform to any array.

* An array-valued expression of the same shape as a target array section.

For example, given the arrays shown, the following statements assign a vector to each
successive row or column of matrix A. (Several of these options are illustrated below.)

DIMENSION A(N,M),B(N,M)

DIMENSION C(N)

= 10

= C

= B(I,:)

= [1:M]

= SIN (C)

= SUM(B,2)!

= FUNC (C) !

Scalar extension (to rows)

Array (to columns)

Array section

Array constructor

Elemental (array) function

Array-valued intrinsic

Array-valued user func.

To illustrate some of these cases, assume
valued right-hand expression,

that A is a 4 x 3 matrix. In the case of a scalar-

FORALL ( I=1:3 ) A(:,I) = I

you can picture each of the three scalar values of I being promoted to a vector for (elemen-
tal) assignment to the corresponding column of array A. (Alternatively, you can picture the

Version 1.0, January 1991

FORALL

FORALL

FORALL

FORALL

FORALL

FORALL

FORALL

(I=1:N)

(I=1:M)

(I=1:N)

(I=1:N)

(I=1:M)

(I=1:M)

(I=1:N)

A(I, :)

A(:,I)

A(I, :)

A(I, :)

A(:,I)

A(:,I)

A(I, :)
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promotion of the scalars as
of A.)

A = 1

L1

spreading the whole vector sequence I on the first dimension

2 3

2 3
2 3
2 3 ]

The effect is similar when the right-hand expression is an array constructor that conforms

to the target section. In this example, a vector is assigned to each successive column. Since

the right-hand side in this example is the same for every assignment, the effect is a spread

operation on the second dimension of A

FORALL ( 1=1:3 ) A(:,I) = [ 1:4 ]

1 1 1
A = 2 2 2

3 3 3
4 44 ]

Similarly, consider an array-valued intrinsic function whose result is of the appropriate

shape. The function reference SUM (B, 2) returns a vector containing the sum of the ele-

ments in each row of matrix B. If B's and A's first dimensions (that is, their columns) are

of the same length, the vector result of SUM (B, 2) conforms to each of the columns of A.

FORALL (I=1:N) A(:,I) = SUM( B, DIM=2 )

1 2 3 4 5
B= 2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

15 -15

A = 20 20

25 25

30 30

Again, the result is a spread operation because the right-hand expression is the same for

each of the assignments. Some complicated patterns of data movement occur when the
right-hand side references the index variables and varies accordingly. See below, Section

8.3, for examples that use FORALL to specify these other patterns of data movement.

Version 1.0, January 1991
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8.1.2 The FORALL Mask

A FORALL statement can contain a mask expression, which prevents certain elements from
being assigned. The mask is a scalar-valued expression, placed inside the parentheses that
enclose the triplet-specs:

FORALL ( triplet-spec[s] [, scalar-mask] ) assignment

The mask expression usually references one or more index variables, although it can be a
constant expression. Its action is comparable to embedding an IF statement in a DO con-
struct.

For example, to avoid division by zero in a FORALL statement:

FORALL ( I=1:N, J=1:M, A(I,J).NE.0.0 ) B(I,J) - 1.0/A(I,J)

Similarly, to clear the part of a square matrix below the diagonal:

FORALL ( I=1:N, J=1:N, I.GT.J ) H(I,J) = 0.0

Order of Execution

The mask is applied as the third step of a four-step FORAL operation:

1. Compute the combinations of index variables.

2. Compute the mask value, true or false, for each combination of index variables.

3. Evaluate the right-hand expression only for the combinations of index variables
where the mask expression is true.

4. Perform the assignments (in unspecified order) where the right-hand side has been
evaluated.
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Array-Valued Masks

The FORALL mask expression is always scalar-valued, even when the left-hand side of the
assignment is an array section and the right is array-valued:

FORALL ( I=1:N, I.GT.5 ) B(I,:) = A(:,I) ! Legal: scalarmask

FORALL ( I=1:N, A.GT.5 ) B(I,:) = A(:,I) ! Error: arraymask

However, array-valued masks can appear in intrinsic function references in the FORALL

assignment. Notice that the two masks in the following statement are entirely independent
of each other:

FORALL (I=1:N, I.NE.5) C(I) =SUM( D(:I,:I), MASK =D.GT.0 )

This example sums the positive elements in varying sections of array D and assigns the
results to the successive elements of array C. The array-valued mask argument to SUM
excludes the zero and negative elements of D; the scalar-valued FORALL mask excludes the
fifth element of C.

8.2 Execution Model

This chapter has pointed out many ways in which a FORALL statement resembles a DO con-
struct. The most significant difference between them is the order of execution of the
individual assignments. Since the order is undefined, but as if simultaneous, the assign-
ments can be simultaneous in fact when FORALL is executed by the CM.

8.2.1 As If Simultaneous

Any FORALL statement can be translated into a DO construct with equivalent effects. Con-
sider a simple example:

FORALL ( I=1:N ) A(I) = I

DO I=1,N

A(I) = I

END DO

Version 1.0, January 1991
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Both these operations seed array A with its own index values. However, the semantics of
the two operations differ in one crucial respect: the order of execution of the DO loop is
index order, while the order of execution of the FORALL assignments is undefined. The
FORAL statement, but not the DO loop, can therefore be executed in parallel by the individ-
ual CM processors.

The significance of as-if-simultaneous execution becomes clear when we use FORAL to
assign an element whose own value is assigned to some other element. For example, con-

sider a transposition of an N x N matrix B:

FORALL ( I=1:N, J=1:N ) B(I,J) = B(J,I)

Notice that the statement does not explicitly save the initial array values in a temporary
location, as a DO construct would need to do. If all the element values are moved simulta-
neously, an element being moved cannot have already received the value of its opposite
number. (In fact, when executed serially, FORAMX creates any necessary temporaries trans-
parently to the user.) Thus, the programmer need not take steps to ensure that only the
original values are used in a FORALL operation. All the elemental assignments are executed
as if at the same moment, when only the original values are available.

Figure 7. Execution order of DO and FORALL in transposing array elements (2,1) and (1,2)
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8.2.2 Serial versus Parallel

The FORALL statement is not considered an array operation for the purpose of determining
an array's home. FORAL can operate on either CM arrays or front-end arrays (or both at
once), and it can execute either serially on the front-end computer or in parallel on the CM.

A third possible mode of execution is serially on the CM. When either FORALL or DO in-

cludes an array operation-such as assigning an array section, evaluating an array-valued
expression, or invoking a transformational intrinsic function-the array operation is per-
formed on the CM. The complete FORALL or DO operation is considered serial if the CM
executes the assignment statement separately for each combination of index variables. The
complete FORALL operation is considered parallel if the CM executes the assignment state-
ments for all combinations of index variables at once.

CM Fortran programmers usually intend that FORAL be executed in parallel, for reasons
of performance. When executed serially, either on the front end or on the CM, FORALL has
no advantage over DO except perhaps some syntactical convenience. In fact, when FORALL

needs to execute serially, the CM Fortran compiler generates a DO construct.

This section outlines the conditions under which FORAM executes serially or in parallel.

Determined by Array Home

Generally, the homes of the arrays referenced in the FORALL assignment determine wheth-
er FORALL executes serially or in parallel (the next section notes the exceptions).
Specifically:

· FoRAL assignments that reference only front-end arrays always execute serially:

FORALL (I=1:N) FE ARRAY(I) = I ! Serial, FE

FORALL (I=1:N) FE ARRAY(I) = FE ARRAY(I+l) ! Serial, FE

* FORALL assignments that reference only CM arrays generally execute in parallel
(with exceptions as noted below):

FORALL (I=1:N) CMARRAY(I) = I ! Parallel

FORALL (I=1:N) CMARRAY(I) = CM ARRAY(I+1) ! Parallel

Version 1.0, January 1991
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* FORALL assignments that reference both front-end arrays and CM arrays always

execute serially:

FORALL (I=1:N)

FORALL (I=1:N)

FEARRAY(I)
CMARRAY(I)

= CMARRAY(I)

= FE ARRAY(I)
! Serial, FE
! Serial, FE

When a FORALL assignment references arrays with different homes, the system moves CM

values one at a time to or from the front end to perform the serial operations. As with any

mixed-home array operation, this data transfer degrades program performance consider-
ably. See Chapter 2 for discussion of mixed-home operations and some suggestions for

avoiding them.

Determined by Kind of Expression

Certain kinds of expressions in the FORALL assignment always cause the statement to be

executed serially, even when only CM arrays are referenced. These are:

* Any reference to a user-defined function, including a statement function:

FORALL (I=1:N) A(I) = USER FUNCTION(I) ! Serial, FE

* Use of a FORALL index variable in an array constructor:

FORALL (I=1:N) B(I:N,:) = I:I+N-1 ] ! Serial, CM

* Most references to transformational intrinsic functions:

FORALL (I=1:N) B(I,:) = ANYTRANSFORM(C(I,:) )! Serial, CM

Future versions of CM Fortran will remove this restriction for some transforma-

tional intrinsic functions and thus enable FORALL statements that reference them

to execute in parallel.

Determined by Temporary Restrictions

The implementation of serial FORALL is complete, but development is continuing on the
parallel version. As new FORALL capabilities are added, their initial implementation may
be serial. Later versions should remove these restrictions on new capabilities and enable
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FORA to execute them in parallel. The CM Fortran compiler generates a warning when-
ever it serializes a FORALL statement.

NOTE

Please see the CMFortran Release Notes for the current version
for any restrictions on parallel execution of FORAL.

8.3 Data Motion

The FORAL statement offers an alternative to other CM Fortran features in expressing var-
ious forms of data motion. The alternatives often vary in syntactical convenience and
sometimes in performance. FORAL statements are often as fast as the fastest alternative

means of expression, though rarely faster.

In addition, FORA L can express several patterns of data motion that are otherwise difficult

to express as parallel operations in CM Fortran. Among these are arbitrary permutations

of multidimensional arrays, operations on nonrectangular or irregular data, and parallel

prefix operations along array dimensions.

8.3.1 Compared with Other Features

F oRnL can express all the array transformations and data motion operations described in

Chapters 6 and 7, mimicking the behavior of array assignments that reference array sec-
tions, vector-valued subscripts, and transformational intrinsic functions. This section

reviews the major categories of data motion already discussed and illustrates FORALL in

expressing each. The sections that follow show patterns of movement for which FORALL

is the only convenient choice.
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Grid Communications

Grid communications, including dimensional shifts and other nearest-neighbor accesses,
have in common the fact that element values all move the same distance in the same direc-
tion to reach their respective destinations.

Grid operations expressed with FORALL and with array sections both use the CM system's
NEWS communication network and achieve about the same performance. For power-of-2
shifts on power-of-2 array dimensions, the shift intrinsics also use NEWS. Thus, to shift
matrix values by, say, four positions on the first dimension, the following statements all
yield about the same performance:

DIMENSION A (N, M), B (N, M)

FORALL (I=1:N-4) B(I,:) = A(I+4,:)

B(1:N-4, :) = A(4:N,:)

B = CSHIFT( A, DIM=1, SHIFT=4 )

The semantics of the last statement differs slightly from the other two: the function CSHIFT
wraps the elements that move off the edge of the array, whereas the other two statements
explicitly prevent any elements from moving off the edge.

General Communications

General communications, including transpositions and arbitrary permutations, have in
common the fact that element values move different distances or different directions to
reach their respective destinations.

General communication operations, whether expressed with FORALL, with vector-valued
subscripts, or with transformational intrinsic functions, always use the router communica-
tion network. This more general facility is of course slower than the NEWS network, which
optimizes the special case of grid communication.

FORALL and vector-valued subscripts are the only features CM Fortran has for expressing
an unordered set of indices. For example, the following statement uses two index vectors
to access locations in a matrix. The lengths of the index vectors v and R are unrelated to
the source array C, but they must equal the length of the corresponding dimensions of the
destination array D:
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DIMENSION C(M,M), D(N,N)

DIMENSION V(N), R(N)

D = C(V,R)

FORALL can mimic this behavior, albeit in a more cumbersome manner:

FORALL (I=1:N, J=1:N) D(I,J) = C( V(I), R(J) )

The real power of FORALL, however, is that it is not limited to vectors for indexing into
multidimensional arrays. FORALL can perform a perfectly arbitrary permutation such as the
following, which uses index arrays X and Y:

FORALL (I=1:N,J=I:M) D(I,J) = C( X(I,J), Y(I,J) )

Global Communication

A third form of communication involves cumulative computations along array dimensions.
Examples of such global communication are the reduction intrinsics and the transforma-
tional function SPREAD (see Chapter 7). Global communication is much faster than general
communication on the CM system, although not as fast as NEWS.

FORALL can express a spread operation-that is, replicate an array along a specified
dimension of another array of rank one higher-with about the same performance as the
function SPREAD. For example, both the following statements spread a vector along the
first dimension of a matrix:

DIMENSION A(N,M), V(M)

FORALL ( I=1:N ) A(I,:) = V

is functionally equivalent to:

A = SPREAD( V, DIM=1, NCOPIES=N )

Similarly, FORALL can express a "reduce and spread" operation, where the result of a
reduction operation along an array dimension is replicated across a dimension:

DIMENSION A(N,M)

FORALL ( I=1:M ) A(:,I) = SUM( A, DIM=2 )

Version 1.0, January 1991
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is functionally equivalent to:

A = SPREAD( SUM( A, DIM=2 ), DIM=2, NCOPIES=M )

This example computes the sum of each row of A and returns the result as a vector. The
vector is then replicated across the rows of A, with the result that each element gets the sum
of all the elements on the second dimension:

A= 2

L4

2 3 4

56 7

10
A = 14

18

22

10 10 10
14 14 14

18 18 18

22 22 22

8.3.2 Operations on Irregular Data

One of the major uses of FORAL is to express operations on irregularly shaped parts of an
array. Such operations can be expressed serially with a DO construct, but FORALL is the
only convenient way to express them for the CM.

A simple example of an operation on an irregularly shaped part of an array is extracting the
diagonal elements of a matrix:

EZIIHZ

The FORALL expression of this operation is:

DIMENSION C(N,N)

DIMENSION D(N)

FORALL ( I=1:N ) D(I) = C(I,I)

Version 1.0, January 1991
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Similarly, consider shifting the values in a matrix diagonal, say, one position to the left:

The elemental assignments that occur in this operation are:

A(2,1) = A(2,2)
A(3,2) = A(3,3)
A(4,3) = A(4,4)
A(5,4) = A(5,5)

or, as expressed with FORALL:

FORALL (1=2:5) A(I,I-1) = A(I,I)

As with DO, the FORALL expressions can describe a number of possible shapes. For exam-
ple, the following statement shifts the lower triangle of a matrix by one position:

FORALL (I=1:N, J=1:I-1) A(I,J) = A(I, J+1)

8.3.3 Parallel Prefix Operations

Parallel prefix operations, sometimes called scans, apply some combining operation to the
elements along an array dimension; that is, they compute for each element the combination
of itself and all previous elements on that dimension. For example, a sum-prefix (or add-
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scan) is the familiar process of balancing a checkbook: each credit or debit is added to the
sum of the previous ones to yield a running subtotal:

[, ,-2, 5, 3, -10 ]

[ 6, 4, 9, 12, 2 ]

Parallel prefix operations are used by many scientific algorithms, such as in line-of-sight
and convex-hull algorithms in computational geometry. Often, they are computed with DO

loops using a serial approach. For instance, the example above could be expressed:

B(1) = A(1)
DO I=2, 5

B(I) = B(I-1) + A(I)
END DO

Despite the serial algorithm used in scanning with DO, scans are not inherently serial opera-
tions: they are computed efficiently by the CM using the global communication network.
To express a scan as a parallel operation, use FORALL to specify the set of subarrays over
which the combiner is applied and specify the combiner with a reduction function. The
destination array can be any array that is conformable with the source array, including the
source array itself. (However, recall the restriction that FORALL statements that reference
a transformational intrinsic function are computed serially in Version 1.0.)

For example, to express an add-scan with FORLL:

FORALL (I=1:5) B(I) = SUM( A(1:I)

A(1:) B(3)

A(1:4) | | SUM(A(1:4)) -- , B(4)

A(1: 5) CW St (A (1: 5) .'..B(5)
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The reduction function SUM returns, for each value of I, the scalar sum of the values up to
and including A(I), which is then assigned to B(I).

To reverse the direction of the scan, so that each element gets the sum of itself and those
following, and the first element gets the cumulative sum:

FORALL (I=1:N) B(I) = SUM( A( N-I+1 : N ) )

The scan operation is easily extended to a multidimensional array, although only one
dimension can be scanned at a time:

FORALL (I=1:N) B(I,:) = SUM( A(1:I,:) )

The combiner in a scan operation can be any operation for which CM Fortran provides a
reduction function: SU, PRODUCT, MAXVAL, MINVAL, ANY, ALL, or COUNT. For example,

the following code uses a multiply-scan to compute factorials:

DIMENSION FACT(N)

FACT = [1:N]

FORALL (I=1:N) FACT(I) = PRODUCT( FACT(1:I))

NOTE

For cases, such as scan operations, where FORALL is temporarily
restricted to execute serially, CM Fortran provides utility routines
that generate the appropriate parallel instructions. These utility
routines are described in the CMFortran User i Guide.
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Chapter 9

Optimizing CM Array Layout

To achieve the best performance on the Connection Machine system, an application

program must maximize processor use and streamline or eliminate interprocessor
communication. Simply stated, this means:

* Use as many CM processors as possible in each operation. To the extent that a

program leaves processors inactive, it reduces the advantages of parallel process-

ing.

* Avoid interprocessor communication wherever possible. Operations within pro-

cessors are faster than operations between processors.

* When communication is necessary, use the more efficient communication mecha-

nisms and paths.

When the CM Fortran compiler allocates an array on the CM, it does so in a canonical

layout that achieves these goals for a variety of array uses. For some uses, however, a dif-

ferent layout would yield greater efficiency. For these cases, CM Fortran provides two

compiler directives, LAYOUT and ALIGN, which enable the programmer to call for the opti-

mal CM array layout given the intended use of the arrays:

* LAYOUT causes an array to be laid out in CM memory in a way that either reduces

interprocessor communication or optimizes the speed of communication along

specified dimensions.

* ALIGN causes specified sections of two nonconformable arrays to be "aligned" in

the same virtual processors, so that elemental operations on their corresponding

elements do not require interprocessor communication.

This chapter introduces the directives LAYOUT and ALIGN and offers some guidelines for
their use.
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9.1 Specifying Directives

Compiler directives appear in the specification part of a main program, subroutine, or func-
tion, typically after the declaration of the arrays to which they apply. The general form of
the directives is:

CMF$ ALIGN arguments

CNF$ LAYOUT arguments

The c of CMF$ must appear in column 1, and blanks must separate the items. Other than
in column 1, column position is unimportant. See the CMFortran Reference Manual for
the complete syntax, including continuation lines and comments, of compiler directives.

9.1.1 Scope of Directives

An ALIGN or LAYOUT directive affects an array only within the program unit in which the
directive appears. If an array is used in more than one program unit, the directive must be
repeated in all the program units (possibly by means of an INCLUDE line). Inconsistent use
of compiler directives across program units results in run-time errors or incorrect results.

9.1.2 Noncanonical Arrays as Arguments

If a directive changes the layout of an array-which is normally the intention-that array
is referred to as a noncanonical array. When such an array is passed as an argument to a
procedure, the dummy array in the procedure must have the same noncanonical layout as
the actual argument. Like mismatched shape or home, mismatched array layout across pro-
cedure boundaries causes a run-time error or incorrect results.

The CM Fortran compiler can catch this error if you provide an interface block whenever
you pass a noncanonical array as an argument. (Interface blocks are described in Chapter
5 and in the CMFortran Reference Manual.) Thus, the directive line that specifies the array
layout should appear in three places: in the specification part of the calling routine, in the
specification part of the procedure, and in the interface block that duplicates the procedure
interface within the calling routine.

Version 1.0, January 1991
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9.2 The Virtual Machine Model

The discussion of elemental array operations in Chapter 2 mentioned that an array object
is allocated in CM memory in a set of virtual processors that has been configured to reflect
the shape of the array. Many different processor configurations, called VP sets, can coexist

during program execution to accommodate array objects of different shapes.

Normally, the CM Fortran compiler creates VP sets and maps CM Fortran arrays onto them
without any intervention from the programmer. It is worthwhile, however, to digress brief-
ly into the nature of VP sets and the canonical array layout in order to understand how the
system seeks to optimize processor use and communication.

Against this background, the later sections explore the ways the programmer can alter the
canonical array layout by means of the compiler directives LAYoUT and ALIGN, and how
these changes can improve the performance of the application program.

9.2.1 Two Execution Models

When compiling a CM Fortran program, the programmer chooses one of two execution
models, Paris or slicewise (see Section 2.5). The execution models differ in the way the
compiler maps CM arrays onto the underlying hardware. The Paris model can execute on
any CM hardware configuration; the slicewise model requires a CM with the optional
64-bit floating-point accelerator.

This chapter does not fully explore the differences between the Paris and slicewise virtual
machine models. (See the CMFortran Optimization Notes for each of the models for this
information.) Instead, this chapter focuses on the significance of the directives LAYOUT and
ALIGN. For this purpose, the similarities between the two models are often more important
than their differences.

All CMs are organized into processing nodes that consist of 32 bit-serial processors and
other associated hardware. Systems equipped with a floating-point accelerator have one
floating-point chip per node-that is, one chip for each 32 bit-serial processors. Programs
compiled for the Paris model use the bit-serial CM processors as the basic physical proces-

sing-plus-memory units. Programs compiled for the slicewise model use the processing
nodes as the basic physical units.

We introduce the term processing element (PE) to refer to the basic unit of either model.
Thus, a 64K CM used in the Paris model has 64K PEs, but when used in the slicewise model,
it has 64K / 32, or 2K, PEs.

Version 1.0, January 1991
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9.2.2 Virtual Processing

The virtual processing mechanism enables a CM to simulate an arbitrarily large number of
PEs by allocating more than one virtual processor per (physical) PE. Each PE executes its
instructions as many times as there are virtual processors assigned to it, a process called VP
looping. If the ratio of virtual to physical is 4, for instance, the PE loops over four instances,

or banks, in its memory for each instruction.

Each set of virtual processors stores its data in the corresponding memory locations in all
the PEs. Thus, a VP set cannot be smaller than the physical machine or machine section that
executes the program. Moreover, all the PEs have exactly the same number of VPs from any
given VP set. This number is the VP ratio, which is constant across the machine for any
given VP set but which can vary from one VP set to another.

For example, suppose you have a VP set of 65,536 (64K) virtual processors. When the pro-
gram containing this VP set executes in the Paris model on a 64K CM, the VP ratio is 1 and
thus one bank of memory is allocated in each bit-serial processor (PE). When the same
program runs on a 32K CM, two banks of memory are allocated in each PE for that VP set,
and the PE executes each instruction twice (once for each instance of memory).

64K CM 32K CM

-- 64K Bit-Serial Processors -- - 32K Bit-Serial Processors -*

FE -E

im ...

... PE

1 virtual
processor

2 virtual
Drocessors

Figure 8. Memory banks allocated (VP ratio) in a 64K VP set: Paris model

In the slicewise model, the principle is the same, but the number of PEs, and thus the VP
ratio, is different. Since a 64K CM has 2K processing nodes (PEs), the VP ratio for the 64K
VP set is 32. For the same size VP set in a program executing on a 32K CM, the VP ratio
is 64.
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Figure 9. Memory banks allocated (VP ratio) in a 64K VP set: slicewise model

Since the PE loops over its virtual processors (including inactive processors) sequentially,
the total execution time for an instruction increases with the VP ratio. The system maxi-
mizes PE use and minimizes VP looping by spreading VPs out across the whole physical
machine-that is, by keeping the VP ratio the lowest possible that accommodates the data.

NOTE

The comparison of execution times for various VP ratios is valid
only within an execution model, not across execution models. Be-
cause of the special optimizations of the slicewise model, it is
likely that the above 64K VP set is processed in less total time un-
der slicewise at VPR=32 than it is under Paris at VPR=1.

9.2.3 VP Geometries

The VPs in a VP set are logically configured into an n-dimensional rectangular grid. A VP
set created by the CM Fortran compiler accommodates the shape of a Fortran array. This
is to say that the VP set is at least the size and rank of the array.
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The VP set may, however, be larger than the array because the exact size and shape-that
is, the geometry-of a VP set must also meet some constraints set by the execution model.
The details are:

* Under Paris, the axes of the VP grid must all be powers of 2 in length. It follows
from this constraint, by the way, that VP ratios (total grid size divided by physical
processors) are also powers of 2.

* Under slicewise, only the total size of the VP grid is constrained: it must be a multi-
ple of 4 times the number of processing nodes, reflecting the fact that the 64-bit
floating-point chips have a vector length of 4. The axes may be any set of lengths
whose product is a legal total size.

The shape of a VP set does not influence the number of instances or banks of physical
memory allocated for it. The 64K VP set shown in Figure 8 and Figure 9 could have been
defined as 64K processors on one axis, or as 8K x 8, or as 64 x 32 x 4 x 8. The number of
banks of memory (the VP ratio) is determined entirely by the total size of the VP set in
relation to the number of PEs executing the program.

Axis Ordering

More relevant to physical memory layout is the ordering of VPs along a grid axis to suit
the requirement that VPs with adjoining addresses be physically connected. In grid-based

ordering, called NEWS ordering, VPs whose grid indices differ by 1 have a direct communi-
cation link. Thus, processor i is connected to processor i+l, which in turn is connected to
processor i+2. This physical connection provides hardware support for grid-based commu-

nication-nearest-neighbor accesses, dimensional shifts, and cumulative computation
along grid axes.

NOTE

Another processor ordering, called send ordering, reflects a sec-
ond set of VP addresses that is independent of grid position.
(Send-ordered VPs are connected if their send addresses differ by
one bit.) Send ordering is used only in a few special cases, and is
not covered in this manual. See CMFortran Reference Manual.

Version 1.0, January 1991
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Axis Weight-

Grid axes in multidimensional VP sets can be assigned relative weights, which give the
system even further information for selecting a particular virtual-to-physical mapping. VPs
along the highest-weighted axis are given the fastest communication links, the next-highest
weight gets the next-fastest connections, and so on. The effect of relative weights is to opti-
mize the speed of communication along the higher-weighted axes at the expense of the

lower-weighted ones.

9.3 Canonical Array Layout

This section describes the canonical layout of CM Fortran arrays-that is, the way the com-
piler lays out arrays in CM memory in the absence of directives. The following sections

show how compiler directives can alter layout to optimize certain intended uses of arrays.

When an array is canonically allocated in CM memory:

· The compiler creates a VP set whose size and shape accommodates the array.

* Under Paris, if the length of an array dimension is not a power of 2, the
corresponding grid axis is the next higher power of 2. If the VP set is still
smaller than the number of CM processors executing the program, extra
virtual processors are added to the VP set along a hidden (zeroth) axis.

* Under slicewise, if the array is not a legal size for a VP set (a multiple of
4 times the number of processing nodes), the compiler "pads" the VP set
with extra processors until it reaches the next higher legal size. No hidden
axis is added; the extra VPs are added to one or more of the existing axes.

In general, slicewise VP sets are padded less often and less heavily than are Paris
VP sets. The goal of the slicewise virtual-to-physical mapping is to minimize the
amount of memory used, and the constraints on VP-set geometry are less stringent.

* The compiler allocates the array one element per virtual processor. The array ele-
ment at the lower bounds of the dimensions, for instance, array element (1,1,...),
is placed in processor (0,0,...).

The "extra" processors that pad the VP set up to the next legal size or geometry are
deactivated (or ignored) during operations on the array.
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All the grid axes are NEWS-ordered, and all are assigned the weight 1. Thus, the
system uses the hardware to optimize grid communication, but none of the array
dimensions is favored over the others.

The zeroth axis created under Paris is given a lower relative weight (0), so that it
is less favored for communication than the axes that contain array elements. The
slicewise model has no axis 0.

When more than one array is canonically allocated in CM memory:

* The compiler places arrays of the same shape in the same VP set and places their
corresponding elements in the same VP. Elemental operations between the arrays
require no interprocessor communication, and dimensional shifts on sections taken
from them can often be performed with NEWS communication.

* The compiler places arrays of different shapes in different VP sets and thus places
their respective elements in different VPs. Most operations across VP sets, includ-
ing elemental operations on conformable sections, require general (router)
communication to copy an array into a temporary location before the operation can
be performed.

The canonical layout optimizes performance in the same way that the virtual processor
mechanism does: by spreading array elements across the whole physical machine (or ma-
chine section) to maximize PE use and minimize VP looping. In addition, the canonical
layout uses the underlying hardware to optimize grid communications, but all the array
dimensions are weighted equally.

Notice, however, that an array too small to fill the physical machine nevertheless ties up
memory across the whole machine. As a result, some number of PEs are left idle during
operations on the array. (An array fails to fill the machine under Paris if it is smaller than
the number of CM processors; under slicewise, an array needs to be 4 times the number of
processing nodes to fill the machine.) If the algorithm permits, small arrays are often better
handled on the front end.
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9.4 The LAYOUT Directive

The LAYOUT directive allows the user to specify the axis ordering and weights of the VP
set in which an array is to be allocated. CM Fortran itself provides another possible order-
ing, serial ordering, which calls for very different features in the underlying VP set than
does the canonical layout.

While parallel (NEWS-ordered) dimensions are allocated across VPs, one element per VP,
serial dimensions are allocated within the memory of the VPs. The subscript values in a
serial dimension reference element data at different offsets into VP memory, rather than in
different VPs.

For example, consider a 4 x 6 array. In the canonical layout, where both dimensions are
parallel, the array is laid out across 24 virtual processors, with one array element in the
memory of each processor. When the first dimension is serial, however, the array is laid out
across 6 virtual processors, with one column in the memory of each processor. Figure 10
indicates these alternative layouts by highlighting the memory of one virtual processor.

Dims 2 (parallel)

1
(parallel) (1,1)

(4,1)

Dims- 2 (parallel)

(1.1)[--

(serial)

IA 1%

m Memory of a single
: virtual processor

(1,6)

(4,6)

(1,6)

(4,6)

Figure 10. Layouts of a 4 x 6 array with first dimension parallel and first dimension serial
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For simplicity, this figure and subsequent figures do not show the actual size of the VP set
in which the array is allocated. Small arrays like the ones shown would be heavily padded
in both Paris and slicewise models to meet the minimum legal sizes for VP sets.

Declaring an array dimension as serial makes no difference in how you reference it or in
the array operations you can perform on it. For instance, to manipulate the elements on the
serial dimension of the 4 x 6 array shown above:

A(1,:) = A(2,:) + A(3,:)**2 + SIN( A(4,:) )

The major difference between this array and a canonical array is that these operations occur
entirely within each of the VPs instead of across VPs, with a consequent increase in speed.
Each PE need only index within its own memory to locate or move the element of interest.

A second difference between this array and a canonical array is in the way sections are
passed as arguments. Recall from Section 5.4.1 that array sections are normally copied to
a temporary location before being passed as arguments to a procedure. However, a section
specified with a scalar subscript for a serial dimension-such as A (2,: ) -is passed in
place. Passing a section in place is of course faster than first copying it to another location.

9.4.1 Syntax

Only one LAYOUT directive can be applied to an array in a program, and the directive must
be repeated in every program unit where that array is used. The directive has the form:

CMF$ LAYOUT array-name ( axis-i-spec, axis-2-spec, ... )

Each array dimension must have exactly one axis-spec, which specifies the ordering and
weight of the dimension. The ordering can be either : SERIAL or': NEWS, and each : NEWS
keyword can be preceded by a literal or named integer constant that indicates the relative
weight. For best performance, all serial dimensions should be specified to the left of the
first parallel dimension.

For example:

DIMENSION A( 100,100,100 )
CMF$ LAYOUT A( :SERIAL, 2:NEWS, :NEWS )

Version 1.0, January 1991
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This directive specifies that array A is to be laid out with one serial dimension and two
NEWS-ordered dimensions, and that dimension 2, with a weight of 2, is to be favored for
interprocessor communication over dimension 3, which gets the default weight 1.

Since NEWS is the default axis ordering, the keyword may be omitted and just a weight
supplied; or, both ordering and weight may be omitted as long as placeholder commas re-
main. Thus, the following directive is equivalent to that above:

DIMENSION A( 100,100,100 )

CMF$ LAYOUT A( :SERIAL, 2, )

Increasing the relative dimension weight does not guarantee a proportional increase in

communication speed for a dimension, but it does help the system in selecting from among
the many possible ways of mapping virtual processors to hardware.

9.4.2 Array Homes

A LAYOUT directive determines the home of the array in the program unit. In the absence
of a directive, an array's home is determined by how it is used (as shown in Chapter 2).
However, a LAYOUT directive that specifies at least one parallel dimension causes the array
to be allocated on the CM regardless of how the array is referenced in the program unit.

It is sometimes useful, particularly for arrays that will be passed as arguments to external
procedures, to supply a LAYOUT directive simply to control the home of an array without
necessarily altering its layout. For example, this directive, which specifies the default CM

layout, guarantees that array B will be allocated on the CM:

DIMENSION B( 1000,1024 )

CMF$ LAYOUT B( :NEWS, :NEWS)

Conversely, this directive

DIMENSION C( 1000,1024 )

CMF$ LAYOUT C( :SERIAL, :SERIAL)

guarantees that array C will be allocated entirely in front-end memory, laid out in the nor-
mal linear, column-major fashion. Such an array may not be used in a Fortran 90 array
operation. (Unlike a CM array, an array with all serial dimensions is not padded to reach
some minimum size or geometry.)
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When you use the LAYOUT directive to control array homes, avoid using the compiler
switch -nodirective, which disables all directives in a program. By disabling LAYOUT
directives, this switch can change array homes and thus cause a valid program to fail.

9.4.3 Serial Ordering

In general, you declare an array dimension serial when the operations you intend to per-
form on it are inherently serial.

There are two different, but equally valid, ways to view an array with mixed parallel and
serial dimensions: as a collection of local (per-virtual-processor) arrays or as a collection
of parallel arrays. The layout and the means of referencing the array are identical in the two
views. The views reflect differences in the intended use of the array and therefore in the
particular way that the layout enhances program performance.

Per-Processor Arrays

One way to view an array with mixed parallel and serial dimensions is as a parallel array
of per-processor arrays. Each per-processor array is stored in its own virtual processor as
a linear array of elements. This is the view depicted above in Figure 10.

In this view, the array represents a collection of subarrays, or local arrays, that will all be
subject to the same operations-the basic rationale for data parallel processing. The paral-
lel dimension provides the parallelism-the replication of the operation-while the serial
dimension optimizes the speed of each instance of the operation by eliminating interpro-
cessor communication. The operation shown at the beginning of this section illustrates the
benefit of using serial dimensions in this way.

A(1,:) = A(2,:) + A(3,:)**2 + SIN( A(4,:) )

Either the parallel array or the local arrays can be multidimensional. For example,
Figure 11 shows an array with one serial dimension and two parallel dimensions. This
array can be viewed as a matrix of local vectors, where each local vector resides in the
memory of a unique virtual processor. This array would be declared as:

DIMENSION A( 4,6,4 )
CMF$ LAYOUT A( :SERIAL, :NEWS, :NEWS )
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Figure 11. A 4 x 6 x 4 array with first dimension serial, viewed as local vectors

Figure 12 shows the layout of an array with two serial dimensions and one parallel dimen-

sion, which can be viewed as a vector of local matrices. This array would be declared as:

Serial (1, ,1
Dim I !::.*

:i:i: :i::.:::

x > :' i .:::::'."

DIMENSION

CMF$ LAYOUT

B( 3,2,4 )
B( :SERIAL, :SERIAL, :NEWS )

Figure 12. A 3 x 2 x 4 array with first two dimensions serial, viewed as local matrices

Version 1.0, January 1991

Memory of a single
... virtual processor

Parallel D

Serial 2
Dims 1

1

. F 

B(:, :,1)

Chzapter 9. ptimizing CMArray Layout 125



.2 CM, Fortra Pormn Guide

In all these layouts, operations within the local arrays require no interprocessor communi-
cation, as they would in the canonical array layout. This increases the speed of operations
such as the following one, which averages the four lower elements of array B (in Figure 12)
and places the result in the upper left corner:

B(1,1,:) = ( B(2,1,:) + B(3,1,:) + B(2,2,:) + B(3,2,:) ) / 4

NOTE

When referring to a section of an array with serial dimensions,
programs get best performance when any scalar subscripts to a se-
rial dimension are to the left of all Fortran 90-style subscripts to
any dimension, serial or parallel. For example, given array B.
above, an operation on B (1,:,: ) or on B (1,1,: is faster than
an operation on B(: ,1,: ) or on B (:,: ,1).

Serial dimensions extract no trade-off for the increased speed as long as the parallel part
of the array-that is, the product of the parallel dimensions-is large enough to reach the
minimum legal size for a VP set. If the parallel array dimensions do not reach legal mini-
mum VP-set size, the system must allocate-and then deactivate-the extra VPs. The result
is idle PEs and thus reduced performance.

The problem of unused resources is more acute under Paris than under slicewise, because
of the somewhat greater likelihood under Paris that an array with serial dimensions might
not fill the physical machine. For example, imagine that you have a 4 x 8K array in a pro-
gram executing under Paris on a 32K CM. In the canonical layout, this array exactly fills
the machine and no resources are wasted. However, if the first dimension is serial, the par-
allel portion of the array is only 8K and thus fills only one-quarter of the machine. The
compiler allocates memory in the additional virtual processors on the zeroth axis, but these
processors are never used.

Notice that no resources are wasted when this array is allocated under the slicewise model.
Since a 32K CM has 1K PEs, the 8K parallel portion of the array fills the machine at a VP
ratio of 8, twice the legal minimum size.
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Sets of Parallel Arrays

A second way to view an array with mixed parallel and serial dimensions is as an indexed

collection of parallel arrays. Such an array can be seen as a serial array of parallel sections,

perhaps as time slices in the evolution of a system. Figure 7 illustrates this view of a

3-dimensional array that is serial in its first dimension.

Figure 13. A 3-dimensional array with first dimension serial, viewed as parallel sections

The array in Figure 7 might have been declared as follows:

DIMENSION

CMF$ LAYOUT

C( N,M,P )

C( :SERIAL, :NEWS, :NEWS )

Similarly, Figure 8 illustrates this viewpoint in relation to a 4-dimensional array that is seri-

al in its first two dimensions. This array might be declared as:

DIMENSION

CMF$ LAYOUT

D( N,M,P,Q )

D( :SERIAL, :SERIAL, :NEWS, :NEWS )

These arrays are declared and laid out in exactly the same way as are per-processor (local)

arrays shown in Figure 11 and Figure 12. What distinguishes the two viewpoints is the

intended use of the arrays: instead of parallel operations on local arrays, this use of serial

dimensions is to operate on one or a few "slices" or parallel planes of the array at a time.
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Figure 14. A 4-dimensional array with first two dimensions serial, viewed as parallel sections

For example, to compute the sum of all the elements on the first plane of the 3-dimensional
array in Figure 7:

TOPSUM = SUM( C(1,:,:) )

Similarly, to increment the values in the third slice of the 4-dimensional array in Figure 8:

D(3,1,:,:) = D(3,1,:,:) + 1

The purpose of declaring serial dimensions, in this view, is to minimize VP looping when
manipulating a parallel section of the array. Recall from Chapter 4 that selecting a section

of an array deactivates the processors that contain the non-selected elements. If the above
arrays were allocated canonically, the physical processors would need to loop over the VPs

for all the planes, if only to discover that most of them are inactive. With the left-most
dimensions laid out within VPs, however, the PE need only access the location of the de-
sired parallel section, simply ignoring the other locations. Thus, no VP looping is required
to operate on any one parallel section of the array and execution time is greatly reduced.
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9.4.4 Aligning Multiple Arrays

Arrays of different shapes are normally allocated in different VP sets. However, an array
with mixed serial and parallel dimensions is allocated in the same VP set as another array
with the same parallel dimensions (assuming equal axis weights). Programs can take
advantage of this fact to eliminate interprocessor communication in operations on non-
conformable arrays that are frequently used together.

For example, consider two arrays declared as follows:

DIMENSION

DIMENSION

CMF$ LAYOUT

CMF$ LAYOUT

A( 10, 256, 256 )
B( 256, 256 )
A( :SERIAL, :NEWS,

B( :NEWS, :NEWS )

Because of the LaYOUT directive, the compiler places these two arrays in the same 256 x
256 VP set. Each of the VPs contains the ten serial elements of array A and one element of
array B. As a result, an operation that involves the parallel planes of array A and the corre-
sponding elements of array B requires no interprocessor communication. For example:

B = A(3,:,:) ! No interprocessor communication

or,

DO (I = 1,10)
A(I,:,:) = B + I ! No interprocessor communication

END DO

On the other hand, an array that is the same shape as A but canonically laid out (or subject
to a different LAYOUT directive) is in a different VP set from A In this case, operations on
the corresponding elements of the two arrays take place across VP sets, with a consequent
increase in execution time.

For example, because the arrays A and C have different axis orderings, the assignment
statement below involves interprocessor communication:

DIMENSION

DIMENSION

CMF$ LAYOUT

CMF$ LAYOUT

A = C

At 10, 256, 256 )

C( 10, 256, 256 )
A( :SERIAL, :NEWS, :NEWS )
C( :NEWS, :NEWS, :NEWS )

! Interprocessor communication

:NEWS )
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9.5 The ALIGN Directive

The ALIGN directive describes the layout of an array in terms of specified axes of another
array whose layout is already determined. This directive causes the elements of the source
array to be placed in the same virtual processors as certain sections of the target array.

The ALIGN directive can speed up an application program by eliminating unnecessary
communication of data when operations are performed on multiple arrays that would not
normally be aligned. For example, if a vector is used repeatedly in array operations with
rows of a matrix, it may be worthwhile to align the vector with one of the rows of the
matrix.

9.5.1 Syntax

Like the LaYOUT directive, the ALIGN directive can be applied only once to an array in a
program, and it must be repeated in every program unit where that array is used. Its format
is:

CtF$ ALIGN source-array ( axis-specs ) WIT target-array ( axis-specs)

The axis-specs of the source array assign a symbolic name to each of its dimensions. The
same symbolic names are then used in the axis-specs of the target array to indicate the pairs
of source-and-target dimensions that are to be aligned in the same VPs. Any target dimen-
sions that are not related to the source array are identified with a scalar index value (or
offset).

For example, to align a 5-element vector V with the first row of the 5 x 5 matrix A:

DIMENSION V(5), A(5,5)
CMF$ ALIGN V(I) WITH A(1,I)

The effect is to place V in the same VP set as A, in the same VPs as A's first row:

VVVVV AAAAA..... AAAAA
..... AAAAA
..... AAAAA..... . AAAA
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Similarly, to align V with the last row of A:

CMF$ ALIGN V(I) WITH A(5,I)

as illustrated by:

.elel

AAAAA
AAAAA
AAAAA
AAAAA

AAAAA

To align V with the first column of A:

CMF$ ALIGN V(I) WITH A(I, 1)

as illustrated by:

V....
V....
V....
V....
V....

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

Multiple Source Arrays

More than one source array can be aligned (in separate directive lines) with a single target.
For example, to align V and another 5-element vector Q with different sections of k

CMF$ ALIGN V(I)

CMF$ ALIGN Q(I)

WITH A(I, 1)

WITH A(I, 3)

as illustrated by:

V.Q..
V.Q. .
V.Q. .
V.Q. .
V.Q..

AAAAA
AAAAA
AAAAA
AAAAA
AAAA
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No interprocessor communication is required when V is used together with the first column

of A or when Q is used together with the third column of A. However, V and Q, although
in the same VP set, are in different VPs, and operations on the two vectors therefore do
require interprocessor communication.

Multidimensional Source Arrays

The source array can of course be multidimensional. The target array must be of the same
or higher rank. For example, to align a 2-dimensional array with the first two dimensions
of a target 3-dimensional array on the target's third "row":

DIMENSION B(5,5), C(5,5,10)

CMF$ ALIGN B(I,J) WITH C(I,J,3)

The ALIGN directive does not support permutation of array dimensions. The dimension
names in the source axis-specs must appear in the same order in the target axis-specs
(although the target's axis-specs may intersperse dimension subscripts among the symbolic
names).

DIMENSION B(5,5), D(5,5)

CMF$ ALIGN B(I,J) WITH D(J,I) [ not supported ]

Aligning Different-Sized Dimensions

A source array dimension must fit entirely within the corresponding dimension of the target
array. Unless otherwise specified, the lower bound of the source dimension is aligned with
the lower bound of the target dimension. For example, the directive

DIMENSION R(5), Q(20)

CMF$ ALIGN R(I) WITH Q(I)

aligns the lower bounds of R and Q:

RRRRRR ...............

QQQQQQQQQQQQQQQQQQQQQ
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You can supply a (positive) offset in the target's axis-spec to indicate another placement.
For example, to align R with the section Q (6: 10), which is offset by five elements from
Q's lower bound:

CMF$ ALIGN R(I) WITH Q(I+5)

as illustrated by:

..... RRRRRR. .
QQQQQQQQQQQQQQQQQQQQQ

Extending this example to a 2-dimensional target array is straightforward. For example,

DIMENSION V(5), B(10,10)

CMF$ ALIGN V(I) WITH B(2,I+3)

causes V to be allocated in the same VPs that contain the section B (2,4: 8):

.......... BBBBBBBBBB

... VVVVV.. BBBBBBBBBB

.......... BBBBBBBBBB
.......... BBBBBBBBBB
.......... BBBBBBBBBB
.......... BBBBBBBBBB
.......... BBBBBBBBBB
.......... BBBBBBBBBB
.......... BBBBBBBBBB
.......... BBBBBBBBBB

Similarly, for a 2-dimensional source array,

DIMENSION A(5,5), B(10,10)

CMF$ ALIGN A(I,J) WITH B(I+5,J+2)

causes A to be allocated in the same VPs that contain B (6:10,3: 7), as illustrated by:
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.......... BBBBBBBBB

.......... BBBBBBBBBB

.......... BBBBBBBBBB

.......... BBBBBBBBBB
.......... BBBBBBBBBB

AAAAA... BBBBBBBBBB
..AAAAA... BBBBBBBBBB
..AAAAA... BBBBBBBBBB
..AAAAA... BBBBBBBBBB
..AAAAA... BBBBBBBBBB

9.5.2 Benefits and Costs

The ALIGN directive can greatly enhance program performance when two arrays that are

not conformable are often used together. By aligning the two arrays in the same virtual

processors, the program uses elemental operations instead of router communication to

operate on corresponding elements of the two arrays.

There are, however, certain potential trade-offs that you should consider when you evaluate

the benefits of using the ALIGN directive in an application program. These trade-offs are

greater memory use, more VP looping, and interprocessor communication in cases where
it would not normally be needed.

Memory Use

A potential penalty for the increase in speed that ALIGN gives is greater memory use. The

layout of the source, or "aligned," array is determined by the target array. In cases where

the source array is much smaller or of lower rank than the target array, a certain amount

of the memory allocated for it in their shared VP set is never used. If the target array has

serial dimensions, the potential for wasted memory is larger.

To pick an extreme example, imagine aligning a vector with the serial dimension of a
matrix:

DIMENSION V(4), A( 4, 32768 )

CMF$ LAYOUT A( :SERIAL, :NEWS )

CMF$ ALIGN V(I) WITH A(I,1)

Array A requires a VP set of size 32K, with the 4 elements of its first dimension allocated
within each VP. The 4-element vector V requires the same amount of memory, since it is
aligned with A's serial dimension. If V were not aligned with A, it would be spread across
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4 VPs in a VP set of 8K x 4. That is, V would use up only one-fourth as much memory if
it were not aligned in this way with A

VP Looping

The source array shares the VP ratio of the target array. If VP looping is required to cover
all the VPs allocated for the target array, the same amount of VP looping is required for the
source array, even when it is used alone. For example:

DIMENSION C(128), D(128, 512)

CMF$ LAYOUT D( :NEWS, :NEWS )
CMF$ ALIGN C (I) WITH D(I, 1)

Array D requires a VP set of 64K. If the program is executed under the Paris model on a
32K machine, each physical processor loops over two VPs; on a 16K machine, it loops four
times. (The VP looping is greater under the slicewise model, although the total execution

time is likely to be less.) The same amount of VP looping, and its consequent execution
time, is required for array C in the following operation:

C = 10

Array C, if canonically laid out under the Paris model, would fit in any size CM with a VP

ratio of 1. When aligned with array D, however, its VP ratio is higher than 1 for any size

CM under 64K. Although the unused processors are deactivated for the assignment state-

ment above, the PEs always loop over all the VPs assigned to them (at least to determine
which ones are active).

Communication Costs

An aligned array may no longer be in the same VP set as other arrays of its own shape.

Array C in the above example is conformable with, but not in the same VP set as, another

128-element vector that is canonically allocated.

DIMENSION C(128), D(128, 512), E(128)
CMF$ LAYOUT D( :NEWS, :NEWS )
CMF$ ALIGN C(I) WITH D(I,1)

If you use vectors C and E together, the operation will require interprocessor communica-
tion and thus greater execution time than if C had been allocated canonically.
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This appendix presents several programming examples in CM Fortran (V0.7 or later).

* A histogram program

* A convolution program

* A prime number sieve

* A solver for Laplace's equation

For comparison, several of these programs are presented in Fortran 77 versions as well.

A.1 Histogram

This subroutine for computing a histogram is shown in both serial and parallel versions.

A.1.1 Histogram: Fortran 77 Version

SUBROUTINE HISTOGRAM(NPOINTS, POINTS, NBARS,

$ LOW, HIGH, BARS, ERR)

INTEGER NPOINTS, NBARS, BARS(NBARS), I, J

REAL POINTS(NPOINTS), LOW, HIGH, BARWIDTH
LOGICAL ERR
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C

C Initialization

C

ERR = .FALSE.

BARWIDTH = (HIGH-LOW)/NBARS

DO 1 I=1,NBARS

BARS(I) = 0

1 CONTINUE

C

C Iterate over POINTS, updating BARS and checking for errors

C

DO 2 I=1,NPOINTS

IF (POINTS(I) .LT. LOW .OR. POINTS(I) .GT. HIGH) THEN

ERR = .TRUE.

ELSE

J = IFIX ((POINTS (I)-LOW)/BARWIDTH)+l+1

BARS(J) = BARS(J) + 1

ENDIF

2 CONTINUE

RETURN

END

A.1.2 Histogram: CM Fortran Version

SUBROUTINE HISTOGRAM(NPOINTS, POINTS, NBARS,

$ LOW, HIGH, BARS, ERR)

IMPLICIT NONE

INTEGER NPOINTS, NBARS, BARS(NBARS), BAR, PT

REAL POINTS(NPOINTS), LOW, HIGH, BARWIDTH

LOGICAL ERR

INTEGER TEMP1(NPOINTS, NBARS), TEMP2(NPOINTS, NBARS)

C

C Initialization

C

ERR = .FALSE.

BARWIDTH = (HIGH-LOW)/NBARS
C
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C First, we fill TEMP1 with values so that TEMP1(PT,BAR) =

C BAR, then we fill TEMP2 such that TEMP2(PT,BAR) contains

C the bar number in which POINTS(PT) falls. Finally, we

C count the "intersections" of TEMP1 and TEMP2 for each bar.

C

FORALL (BAR=1:NBARS) TEMP1(:,BAR) = BAR
FORALL (PT=1:NPOINTS, BAR=I:NBARS)

$ TEMP2(PT,BAR) = IFIX( (POINTS(PT)-LOW)/BARWIDTH )+1

BARS = COUNT( TEMP1 .EQ. TEMP2, DIM=1 )

C

C Check for errors

C

ERR ANY(POINTS .LT. LOW .OR. POINTS .GT. HIGH)

RETURN

END

PROGRAM HISTTEST

INTEGER NPOINTS, NBARS, I, J, K

PARAMETER (NBARS = 10, NPOINTS = NBARS*(NBARS+1)/2)

LOGICAL ERR

INTEGER BARS(NBARS)

REAL POINTS(NPOINTS)

BARS = 0
K= 1

DO I=1,NBARS

POINTS(K:K+I-1) = REAL(I)
K=K+ I

END DO

ERR = .FALSE.

CALL HISTOGRAM(NPOINTS, POINTS, NBARS,

$ 0.9, 10.1, BARS, ERR)

DO I=-1,NBARS

PRINT *,I,BARS(I)
END DO

IF (ERR) PRINT *,"An error was detected"
END
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A.2 Convolution

This program illustrates 1-dimensional convolution over a 2-dimensional data set (done in
column direction). It is shown in both serial and parallel versions.

A.2.1 Convolution: Fortran 77 Version

PROGRAM CONVOLVE

INTEGER NT,NX,NFP

PARAMETER (NX=2048)

PARAMETER (NT=128)

PARAMETER (NFP=16)
REAL F(NFP)

REAL P(NT,NX), Q(NT,NX)

C Initialize P and Q

DO I=1,NX

DO J=1,NT

P(J,I) = FLOAT(J)
Q(J,I) = 0.0

END DO

END DO

C Initialize F

DO I=1,NFP

F(I) = I

END DO

C Shift the array P by one over the first dimension

C Compute Q after the shift on P

DO IFP=1,NFP

DO I=1,NX

DO J=NT-1,1,-1

P(J+1,I) = P(J,I)
END DO

P(1,I) = 0.0
END DO
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DO I=1,NX

DO J=1,NT

Q(J,I) = Q(J,I) + P(J,I) * F(IFP)
*END DO

END DO

END DO

C Show results

PRINT *, ( Q(I,1), I = 1,NT )

STOP

END

A.2.2 Convolution: CM Fortran Version

PROGRAM CONVOLVE

IMPLICIT NONE

INTEGER, PARAMETER

INTEGER I, IFP

REAL F(NFP)

REAL, ARRAY(NT,NX)

:: NX=16, NT=16, NFP=16

:: P, Q

C

C Initialize P and Q on the CM.
C

Q = 0.0
FORALL(I=1:NT) P(I,:) = FLOAT(I)

C

C Initialize F on the front end.

C

DO IFP = 1, NFP
F(IFP) = IFP

END DO
C

C

C

C

Shift the array P by one over the first dimension.

Compute Q after the shift on P.

Version 1.0, January 1991

Appendix A. Sample Programs 143



144 CM Fortran Prog.ra'mmi ' ng Guide S f- As >;

DO IFP = 1, NFP
P = EOSHIFT(P, DIM=1, SHIFT=-1)
Q = Q + P * F(IFP)

END DO

C

C Show results

C

PRINT *, ( Q(I,1), I = 1, NT)

END
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A.3 Prime Number Sieve

This program for finding the prime numbers in a set of numbers is presented in three ver-

sions: a serial version and two alternative parallel versions.

A.3.1 Primes: Fortran 77 Version

PROGRAM FINDPRIMES

INTEGER I, J, N

PARAMETER (N = 999)

LOGICAL PRIMES(N), CANDID(N)

Initialization

DO 1 I=1,N

PRIMES(I) = .FALSE.

CANDID (I) = .TRUE.

1 CONTINUE

CANDID(l) = .FALSE.

C

C Loop: Find next valid candidate, mark it as prime,
C invalidate all multiples as candidates, repeat.

C

2 DO 4 I=1,SQRT(REAL(N))

IF (CANDID(I)) THEN

PRIMES(I) = .TRUE.

DO 3 J=I,N,I

CANDID(J) = .FALSE.
3 CONTINUE

ENDIF
4 CONTINUE

C

C At this point, all valid candidates are prime
C

DO 5 I=SQRT(REAL(N))+1,N

PRIMES(I) = CANDID(I)
5 CONTINUE
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C

C Print results

C

DO I=1,N

IF (PRIMES(I)) PRINT *,I

END DO

END

A.3.2 Primes: First CM Fortran Version

This first parallel version is a straightforward translation of the serial program Although
it is much faster than the serial program, it is not the fastest possible implementation.

PROGRAM FINDPRIMES

IMPLICIT NONE

INTEGER I, N, NEXTPRIME

PARAMETER (N = 999)

LOGICAL PRIMES(N), CANDID(N)

C

C Initialization

C

PRIMES = .FALSE.

CANDID = .TRUE.

CANDID(l) = .FALSE.

C

C Loop: Find next valid candidate, mark it as prime,

C invalidate all multiples as candidates, repeat.

C

NEXTPRIME = 2

DO WHILE ( NEXTPRIME .LE. SQRT( REAL(N) ) )

PRIMES( NEXTPRIME ) = .TRUE.

CANDID( NEXTPRIME:N:NEXTPRIME ) = .FALSE.

NEXTPRIME = MINVAL( [:N], DIM=l, MASK=CANDID )
END DO

C

C At this point, all valid candidates are prime.
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C

PRIMES( NEXTPRIME:N ) = CANDID( NEXTPRIME:N )

C

C Print results

C

PRINT *, "Number of primes:",

DO I=l, N

IF (PRIMES(I)) PRINT *, I

ENDDO

END

COUNT .(PRIMES)

A.3.3 Primes: Second CM Fortran Version

This parallel version uses a different approach from the two programs just shown. This
program is very fast because it uses more processors than the first parallel version. (The
speed advantage is less at higher VP ratios.)

PROGRAM FINDPRIMES

IMPLICIT NONE

INTEGER I, N, NN

PARAMETER (N = 500)

INTEGER TEMP1(N,N), TEMP2(N,N)

LOGICAL CANDID(N,N), PRIMES(N)

C

C Initialization
C

CANDID = .FALSE.

FORALL (I=1:N)

FORALL (I=1:N)

TEMP1(I,:) = 2*I+1

TEMP2(:,I) = 2*I+1

C

C At this point, the temporary 2-dimensional arrays are

C modulated element by element. If an element in TEMP1 is

C not a multiple of the corresponding element of TEMP2, or

C (for the sake of an easily generated argument to the up-

C coming ALL instrinsic) the element in TEMP1 is greater
C than or equal to the corresponding element in TEMP2, then

C the corresponding element in the CANDID array is set.
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C

WHERE ( ((MOD( TEMP1,TEMP2 ) .NE. 0)

$ .AND. (TEMPI .GT. TEMP2))

$ .OR. (TEMPi .LE. TEMP2)

$ CANDID = .TRUE.

END WHERE
C

C The following statement performs an AND across the second

C dimension of CANDID and stores the results in PRIMES.
C

PRIMES = ALL(CANDID, DIM=2)
C

C Print results

C

PRINT *, "Number of primes:", COUNT(PRIMES)+1

PRINT *, 2

DO I=1,N

IF (PRIMES(I)) PRINT *, 2*I+1
ENDDO
END

Version 1.0, January 1991



Appendix A. Sample Programs 149

A.4 Laplace Solver

This program solves Laplace's equation

V 2 f = 0

on the unit square ( 0,11 x [0 ,1 ), subject to the boundary condition that f= 1 at
y = 1 andf = 2 along the rest of the boundary. This program uses the 5-point Jacobi relax-
ation method, with f initially set to 0 on the interior.

PROGRAM LAPLACE

PARAMETER (MAXX=32)

PARAMETER (MAXY=MAXX)
REAL F(MAXX,MAXY),DF(MAXX,MAXY)

LOGICAL CMASK(MAXX,MAXY)

REAL RMS_ERROR,MAX_ERROR
INTEGER ITERATION

C

C Initialize the mask for the interior points
C

CMASK = .FALSE.

CMASK(2:MAXX-1,2:MAXY-1) = .TRUE.
C

C Initialize F

C

F = 2.

F(:,MAXY) = 1.

WHERE (CMASK) F = 0.
C

C Set a dummy value for MAX ERROR
C

MAXERROR = 1.

ITERATION = 0
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C

C Iterate until MAXERROR < 1.E-3

C

DO WHILE (MAX_ERROR.GT.1.E-3)

ITERATION = ITERATION + 1

C

C Compute DF, the change at each iteration, and update

C

DF = 0.

WHERE (CMASK)

DF = 0.25*(CSHIFT(F,1,1)+CSHIFT(F,1,-1)+

S CSHIFT(F,2,1) + CSHIFT(F,2,-1)) - F
F = F + DF

ENDWHERE

C

C Compute the RMS and Maximum errors.

C

RMSERROR = SQRT(SUM(DF*DF)/((MAXX-2)* (MAXY-2)))

MAXERROR = MAXVAL(DF,MASK=CMASK)
C

C See if we should print things out

C

IF (MOD(ITERATION,10).EQ.0) THEN

WRITE (6,*) ITERATION,RMS ERROR,MAX ERROR

ENDIF

ENDDO

C

C Write the final iteration count

C

WRITE (6,*) ITERATION,RMS ERROR,MAX ERROR

END
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A
ALIGN directive, 130

and communication, 134
syntax of, 130

ALL intrinsic function, 82
ANY intrinsic function, 82
array arguments, 46

adjustable dummies, 50
array descriptors, 47
array sections, 54
assumed-shape dummies, 51
assumed-size dummies, 51
CM arrays, 46, 79
controlling homes of, 49
controlling in/out copying, 56
effect ofLAYOUT, 114

explicit-shape dummies, 50
front-end arrays, 46
homes of, 48
retrieving properties of, 58
saving values of, 48
serial arrays, 122
shapes of, 50
to intrinsic functions, 79
types of, 50

ARRAY attribute, 26
array constructors

and DATA attribute, 31

as CM array arguments, 30, 87

forms of, 30
array homes

argument arrays, 48
assumed-shape arrays, 51
assumed-size arrays, 51
automatic arrays, 52
character arrays, 13
common arrays, 61
controlled with COMMON, 63

controlled with LAYOUT, 49, 62, 123

local arrays, 17
mixed-home operations, 17, 48, 103
not affected by declaration, 25
not affected by FORALL, 102
not affected by initialization, 32
verifying with -list, 49

array object, defined, 5
array operations, defined, 13
array processing, defined, 3
array sections

and communication, 42
conformable, 42, 73
default forms, 41
negative strides, 39
of multidimensional parents, 40
parent arrays, 39
rank of, 41, 72
scalar and triplet subscripts, 41
scalar and vector-valued -subscripts, 72
triplet subscripts, 39
vector-valued subscripts, 71

array transfer utilities, 18
arrays

automatic, 52, 60
canonical CM layout, 119
common. See common arrays
rank of, 27
reshaping, 16, 88

retrieving properties of, 58
serial. See LAYOUT directive

shape of, 27
temporary, 52

arrays, conformable. See conformable arrays

C
cmattach command, 20
cmf command. See compiler command cmf
CMF FE ARRAY ROM CM utility, 18
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CMF FE ARRAY TO CM utility, 18

CMF_RANDOM utility, 29
common arrays

declaring, 62
homes of, 61
initializing, 64

COMMON directive, 63

communication, three CM mechanisms, 7,
105

communication, and performance, 113
compiler command cmf

switches

-argument_checking, 48

-commoninitialized, 64

-fecommon, 63

-list, 49

-nodirectives, 63

-paris, 20

-slicewise, 20

using, 20
compiler directives

See also entries under directive names
scope of, 114
syntax of, 49, 114

conditionals
See also WHERE
front end controlling CM, 37

conformable arrays
defined, 14
in masked assignments, 34
layout in CM memory, 14, 120

constants, defining, 27
control constructs

from Fortran 90, 9
front end controlling CM, 37

COUNT intrinsic function, 82

CSHIFT intrinsic function, 75

D

DATA attribute, 31
with common arrays, 64

DATA statement, 29
with common arrays, 64

data types
See also declarations
seven supported, 13

declarations
attributed, 26
function calls in, 32, 60
of lower bounds, 27
with initialization, 31, 64

DIAGONAL intrinsic function, 87
directives. See compiler directives
DLBOUND intrinsic function, 59
DOTPRODUCT intrinsic function, 92
DSHAPE intrinsic function, 58
DSIZE intrinsic function, 58
DUBOUND intrinsic function, 59

E

elemental array assignment, 93
elemental operations, defined, 11
EOSHIFT intrinsic function, 77
executing programs, 20
execution models, 20

F

FIRSTLOC intrinsic function, 85
FORALL statement, 93

as-if-simultaneous execution, 100
assignments in, 95
data movement with, 104
mask expression in, 99
masked intrinsic functions in, 100
parallel prefix operations with, 108
restrictions on, 95, 103
serial vs. parallel execution of, 102
spread operations with, 98
syntax of, 94

foreign Fortran compilers, 21, 62
Fortran 77, and CM Fortran, 3, 9
Fortran 90, and CM Fortran, 5, 50, 93
front-end computer

in CM system, 6
scalar operations, 6
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functions
See also intrinsic functions, and functions

by name
array-valued, 60
statement, 45
user-defined, 45, 60

G

global communication. See communication, 7

H

homes of arrays. See array homes

I

I/O

and CM file system, 10
and UNIX file system, 12
statements, 19

IMPLICIT statement, 13
INTENT attribute, 56
INTENT statement, 56
interface blocks

and argument homes, 54
and argument shapes, 53
with compiler directives, 114
with INTENT attribute, 56
with LAYOUT directive; 54

intrinsic functions
See also functions by name
argument keywords in, 75
construction, 87
elemental, 14

inquiry, 58
location, 83

movement (transformational), 75
multiplication, 92
reduction, 80
transformational, 79

irregular data, FORALL operations on, 107
iteration, with front-end control construct, 37

K
keywords, in intrinsic function calls, 75

L

LASTLXo intrinsic function, 85
LAYOUT directive, 121

serial arrays as arguments, 122
serial dimensions, 121
syntax of, 122

M

masked array assignment
using FORALL, 99
using WHERE, 34

MATMUL intrinsic function, 92
MAXLOC intrinsic function, 83
MAXVAL intrinsic function, 80
MERGE intrinsic function, 90
MINLOC intrinsic function, 83

N

NEWS communication. See communication, 7

P
PACK intrinsic function, 87
parallel prefix operations, using FORALL, 108
PARAMETER attribute, 27
PARAMETER statement, 27
parent arrays. See array sections
Paris execution model, 20, 115
permuting array elements

using array sections, 70
using FORALL, 106

using vector-valued subscripts, 73, 105
procedures, 45

R

random numbers, generating, 29
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REPLICATE intrinsic function, 88
replicating array elements, using

vector-valued subscripts, 74
RESHAPE intrinsic function, 88
reshaping arrays, 16, 88
router communication. See communication, 7

S
SAVE attribute, 48
scalars, in array operations, 16
scan operations, 108
sections. See array sections
serial arrays. See LAYOUT directive
shifting array elements

using array sections, 68
using FORALL, 105

using intrinsic functions, 75
slicewise execution model, 20, 115
SPREAD intrinsic function, 91
spreading array elements

using FORALL, 98, 106

using SPREAD, 91

subroutines, 45

T

transformations. See intrinsic functions
TRANSPOSE intrinsic function, 77
triplet subscripts. See array sections

U

UNPACK intrinsic function, 87

V

vector-valued subscripts, 71
virtual processing

and aligned arrays, 134
and data parallel processing, 6
described, 116

and serial arrays, 121, 129

W
WHERE construct, 35
WHERE statement, 34

Version 1.0, January 1991

156 CMFortran Programming Guide


