
Thinking Machines Corporation

Getting Started in CM Fortran

I: .

·
s

r

r

5

··

C

'·

'·

··

r

L

C

C

C

The
Connection Machine
System

Getting Started in CM Fortran
_____INEM-.

November 1991

S
Thinking Machines Corporation

Cambridge, Massachusetts

V
Revised Edition, November 1991

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising- from the application or use of any information or product described herein.

Connection Machines is a registered trademark of Thinking Machines Corporation.
CM, CM-1, CM-2, CM-200, CM-5, and DataVault are trademarks of Thinking Machines Corporation.

CMosT and Prism are trademarks of Thinking Machines Corporation.

C*® is a registered trademark of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
Thinking Machines is a trademark of Thinking Machines Corporation.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents
__.BM

Chapter 1

1.1

1.2

1.3

Chapter 2

2.1

2.2

2.3

2.4

Chapter 3

3.1

3.2

3.3

Chapter 4

What Is CM Fortran?

Array Processing in CM Fortran

The Connection Machine System ...

CM Fortran on the CM System

A Simple Program

Declarations
Array Operations

Input-OLutput
Procedures

Selecting Array Elements

Conditional Operations

Array Sections

The FORALL Statement

Array Transformations

4.1 Data Movement Functions ...

4.2 Array Reduction Functions ...

4.3 Array Construction Functions

4.4 Array Multiplication

Chapter 5 Sample Programs

5.1 Prime Number Sieve

5.2 Laplace Solver

Index

S

November 1991

0

1

1

3

4

7

10

10

13

14

19

19

21

25

29

30

31

33

37

.................................... 39

.................................... 39

.................................... 43

45

......
................
................
................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

....

iii

I.

*#

0
Customer Support

NNNAIV-NM ' .-

Thinking Machines Customer Support encourages customers to report errors in Connec-
tion Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us iden-

tify and correct the problem. A code example that failed to execute, a session transcript,
the record of a backtrace, or other such information can greatly reduce the time it takes

Thinking Machines to respond to the report.

If your site has an Applications Engineer or a local site coordinator, please contact that
person directly for support. Otherwise, please contact Thinking Machines' home office
customer support staff:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street

Cambridge, Massachusetts 02142-1264

Internet
Electronic: Mail:

uucp
Electronic Mail:

Telephone:

customer-support@think.com

ames !think! customer-support

(617) 234-4000

(617) 876-1111

v

Chapter 1

What Is CM Fortran?

The CM Fortran language is an implementation of Fortran 77 supplemented with
array-processing extensions from the ISO and ANSI (draft) standard Fortran 90.
These array-processing features map naturally onto the data parallel architecture
of the Connection Machine (CM) system, which is designed for computations on
large data sets. CM Fortran thus combines:

* The familiarity of Fortran 77, often the language of choice for scientific
computing

· The expressive power of Fortran 90, which offers a rich selection of opera-
tions and intrinsic functions for manipulating arrays

The computational power of the CM system, which brings hundreds or
thousands of processors to bear on large arrays, processing array elements
in unison

This manual introduces CM Fortran as implemented for all Connection Machine
models: CM-2, CM-200, and CM-5. The language itself is completely portable
among Connection Machine models, although some features of the underlying
system architecture and operating system differ from one model to another.

1.1 Array Processing in CM Fortran

The essence of the Fortran 90 array-processing features is that they treat arrays
as first-class objects. An array object can be referenced by name in an expression
or assignment or passed as an argument to any Fortran intrinsic function, and the
operation is performed on every element of the array.

0
November 1991 1

2. Get..n Sa inC- .

REAL A(40,40,40)

A = 8.0

A = A * 2.0

A = SQRT(A)

! Set all 64,000 elements to 8.0.

! All 64,000 elements contain 16.0.

! All 64,000 elements contain 4.0.

Fortran 90 Array References

When an array is referenced in the Fortran 77 manner (with subscripts), its ele-
ments are treated as individual scalars. To operate on such an array, you need to
step through its elements in a loop, nested as deeply as the number of dimensions.
Fortran 90 array operations dispense with the individual subscript references and
the DO loops.

Fortran 77 style Fortran 90 style

B =B +1

The results are the same, but the semantics are slightly different. The Fortran 77
constructs are evaluated in the order specified by the nested loops, whereas For-
tran 90 allows the elements of B and c to be processed in any order, including
simultaneously. The CM system takes advantage of this standard feature to pro-
cess the array elements in parallel.

November 1991

INTEGER B(100)

DO 30 I=1,100
B(I) = B(I)+1

30 CONTINUE

INTEGER C(100,100)

DO 30 =1,100

DO 40 =1,100

C(I,J)=C(I,J)+1
40 CONTINUE

30 CONTINUE

2 Getting Started in CM Fortran

Data Parallel Processing

A serial implementation of Fortran 90 would have the syntactical convenience of
referencing arrays as objects, but the compiler would necessarily generate serial
loops. The CM system stores the array elements in the memories of separate pro-
cessors and operates on multiple elements at once.

For example, given a 40 x 40 x 40 array A, consider the statement:

A = SQRT(A)/2

To execute this statement, a serial computer would need to perform 128,000 arith-
metic computations. The CM system, in contrast, provides a processor for each
of the 64,000 data elements, and each processor needs to perform only two com-
putations.

Because there is only one instruction stream, the CM processors are naturally
synchronized. Race conditions cannot develop because no processor proceeds to
the next instruction until all have finished the current instruction. This fact is the
essential distinction between data parallel processing (the execution model for
CM Fortran and the other CM languages) and host-node processing (or message
passing).

1.2 The Connection Machine System

The CM program execution environment consists of a set of processors, each
with its own memory, all acting under the direction of a serial control processor.
(In the CM-5, the control processor is called the partition manager; in the CM-2
and CM-200, it is called the front end.) To accommodate a data set that is larger
than the set of physical processors, the processors subdivide their memory among
multiple data elements and process each in turn. As a programming model, you
can imagine the parallel processing unit as a set of virtual processors, one for
each data element.

code and data

results
F-1iFH~ f7F 2 M Parallel

Processors

§ M M M M Distributed

Memory

November 1991

I wlllt" t 't T. ru 7;)I·fYl n

When the CM system executes a data parallel program, the serial processor
directs the flow of control and also operates on scalar data stored in its own
memory. For parallel operations, the serial processor directs all the parallel pro-
cessors (or some selected subset of them) to execute instructions on user data
stored in their own memories.

Few useful problems decompose into completely independent subproblems, of
course; most require the parallel processors to interact. Fortran 90 defines numer-
ous intrinsic functions and other features that transform arrays or move their
elements. These features map naturally onto the CM's mechanisms for inter-

processor conununication.

1.3 CM Fortran on the CM System

CM Fortran is a superset of Fortran 77. The differences between the two lan-
guages reflect a basic fact of CM architecture: a CM Fortran program is directing
two CM system components with different memory organizations. An array can
be stored - that is, its home can be - either in the centralized memory of the
serial processor or in the distributed memory of the parallel processors.

Memory Management

No new data structure is needed to express parallelism, and the programmer need
not take any special action to invoke the parallel processing unit. Within each
program unit -- main program, subroutine, or function - the CM Fortran com-
piler allocates arrays on one system component or the other depending on how
they are used.

* Arrays that are used only in Fortran 77 constructions in a program unit,
and all scalar data, reside on the serial control processor (called the front

end in CM Fortran). Essentially, the front end executes all of CM Fortran
that is Fortran 77.

* Arrays that are used in array operations anywhere in a program unit reside
on the parallel processing unit (called the CM in CM Fortran). Essentially,
the CM executes all of CM Fortran that is Fortran 90.

November 1991

A ~~irr t/~t i r~v~~

L, nuper 1. ff nar L1 ~J! l'O!7ran! u

Serial Control
Computer

in* Scalar dabta Parallel ProcessorsI! . .-. .. : i
- uD;Gnpla 1 1

arrays

s Fortran 77
operations

I

CM Fortran programmers usually avoid using an array both as an array object
and as a subscripted array. Such an array has a CM home, but the system moves
it to the front end, one element at a time, to perform the serial operation. Natural-
ly, this transfer exacts a performance cost.

* CM Array Operations

CM Fortran supports all Fortran 77 features for operating on scalar data and sub-
scripted arrays. For operating on CM arrays (array objects), CM Fortran includes
these Fortran 90 array-processing features:

* Elemental operations. Most Fortran 77 features - operators, statements,
and intrinsic functions - can be applied to CM arrays. These operations
are called elemental because they behave as if they had been applied sepa-
rately to each element of the array (in undefined order).

Because of the CM's distributed memory, certain Fortran 77 features with
storage-order dependencies - most notably, the EQUIVALENCE state-
ment -- cannot be used with CM arrays.

9 Conditionals and subarrays. Fortran 90 syntax and statements can select
subarrays for array operations. The elements of interest can be selected
either by their values or by their positions in the array.

9 Array intrinsic functions. The Fortran 90 intrinsic functions inquire about
arrays' properties, shift or transpose elements, determine the location of
certain elements (such as the maximum value), perform vector and matrix
multiplication, reduce arrays to scalars, or construct new arrays from the
information in argument arrays.

November 1991

,eIL -__ 7 T/r/,r T_ 9,ir ~m

CM Fortran also includes some features that are specific to the CM system. These
features are particularly useful for data parallel programming:

* CMFortran extensions. CM Fortran offers the FORALL statement, which
performs an elemental array assignment where the particular values
assigned are location-dependent, and several intrinsic functions beyond
those defined in Fortran 90.

* Compiler directives. Several compiler directives control the layout of
arrays in CM memory, which can have major effects on program perform-
ance. Another directive controls whether arrays in common blocks are
stored on the CM or the front end.

· Utility Library routines. These procedures serve a number of purposes,
such as:

* Providing Fortran 90 capabilities that are not yet implemented in
CM Fortran, such as generating random numbers

* Performing actions that are specific to the CM system, such as mov-
ing an array en masse between front-end memory and CM memory

* Improving performance in cases where the CM Fortran compiler
does not yet translate language syntax into the optimal parallel
instruction

CM Fortran Documentation

* CM Fortran Programming Guide expands this Getting Started guide to
describe all the major language features in a task-oriented way.

* CM Fortran Reference Manual defines the language and the compiler
directives.

* CMFortran User i Guide (published in separate editions for the CM-2/200
and for the CM-5) describes the compiler and its switches, the debugger
and other development facilities, and the library of utility routines.

* CMFortran Optimization Notes describe the mapping of CM arrays onto
CM memory and provide some hints about efficient CM programming
practices.

November 1991

r. nL~t*"Drr CICAUC=A J-X i-n l-

Chapter 2

A Simple Program

This chapter examines a simple program to illustrate the operations that are fun-
damental to any array-processing program:

· Declaring arrays

* Moving data into arrays

· Computations on arrays

(1) · Retrieving the results of computations

* Compiling and executing a program

Program simple, shown on the next page, declares three arrays and uses them
in various Fortran 90 array operations. The program also includes a subroutine
and a function, which illustrate CM arrays as arguments.

The remainder of this chapter steps through this program, pointing out the essen-
tials of programming in CM Fortran.

The later chapters introduce the methods of operating on selected elements
of an array (Chapter 3) and the functions that perform array transformations
(Chapter 4).

..

November 1991 7

8 Getting Started in CMFortran
%._ .. _ .~~. ~ .~~~

November 1991

Chapter 2EilePogra

o. ."i '.t:.some'de.u..er.ofpro.ess f he .. d uaton. Ofprogram execution".'
some•!.:7 :i:rs or~~ii~N i::~,,ii:.:i~}~~ii:i' ":}~1'il :'217. ',"'!:.'?2::7':..:::'::i::i:':: : I::':.:-:: 1: -. ::.':. . :i"'- '""'

0

November 1991

Chapter 2. A Simple Program 9

i1%/v MJ U'tang olurtleu Iln JvL rurLrun

2.1 Declarations

The specification part of program simple. fcm is familiar Fortran 77. It could
also have used the DATA statement and the COMmON statement. All the Fortran 77
data types are supported, plus DOUBLE COMPLEX.

At this point in. the program, there is no distinction between front-end arrays
(subscripted arrays) and CM arrays (array objects): A, B, and c could be either,
depending on how they are later used in the executable part of the program unit.
Only in certain cases does the specification part of the program determine an
array's home:

* All character arrays have a front-end home and must be used in the Fortran
77 manner. (Since the CM system does not support parallel processing of
character arrays, these arrays cannot be used in Fortran 90 array opera-
tions.)

* Common arrays have a CM home by default. The compiler assumes that
common arrays are intended for use in array operations unless the user
specifies otherwise with a compiler directive or switch (see Section 2.4,
below). 9

2.2 Array Operations

An array operation is any reference to an array object - that is, any use of the
array name without subscripts - in an expression, assignment, or intrinsic func-
tion call. The various forms of array operation are all illustrated in program
simple.fcm:

A = 2 ! a CM array assignment

C = A**2 + B**2 ! array-valued expressions

PRINT *, ... MAXVAL(C) ! intrinsic function call

These statements cause the three arrays to be allocated on the CM, where the
operations are carried out in parallel.

The function MAXVAL is an example of the array-processing intrinsic functions
that CM Fortran adds to Fortran 77. Most of the new array-processing intrinsics
take only array objects as arguments (not scalars), and they always execute on the
CM. The Fortran 77 intrinsics are extended in CM Fortran to take either scalars
or array objects as arguments.

November 1991

/n^.L~u-- Cr+AXj ; ramII D__L-1

Cat2. AMg

Array Constructors

Notice the assignment of initial values to array B in program simple. fam:

B = [1:5]

The construction on the right is a Fortran 90 feature called an array constructor.
An array constructor is a sequence of values enclosed in square brackets; it speci-
fies an unnamed, one-dimensional array containing those values. In CM Fortran,
an array constructor is always treated as a CM array; it can be used in an array
assignment or passed as an argument to an intrinsic function.

Array constructors can specify values in several ways:

ARRAY = [1,2,3,4,5,6,7,8,9,10 ! List the values

ARRAY = [1:20:2] . Specify a sequence

ARRAY = [5[0], 5[1]] ! Specify one or more repeat counts

In the first form, the values can be any type other than character. If you list more
than one type, the constructed array is the same type as the first value listed. In
the second two forms, the values specified must be integers, but you can coerce
them to another type by means of any of the Fortran 77 type-conversion func-
tions.

Conformable Arrays

When an expression or assignment involves two or more arrays, the arrays must
be conformable, that is, they must be of the same size and shape. Scalars can be
used freely in array assignments and array-valued expressions, since Fortran 90
defines a scalar as conformable with any array.

A = 2

C = A**2 + B**2

The first statement causes every element of A to receive a 2. In effect, 2 is treated
as a five-element vector of 2's, and each element of A is assigned an element of
that vector. (In fact, the front end "broadcasts" 2's to all the CM processors,
where they are treated as immediate operands in the assignment.) In the second
statement, every element of c receives the sum of the squares of the correspond-
ing elements of A and B.

November 1991

Chapter 2. A Simple P·ogram 11

e -N12 etigStrediNCErfa

Fortran 90 does not define the effect of mixing array objects of different sizes and
shapes in an expression or assignment:

REAL C(5), D(10,10)

C = D ! ERROR: Nonconformable arrays

This assignment of D to c becomes meaningful only if you select a one-dimen-
sional, five-element subarray, or array section, from D. The syntax for specifying
an array section is shown later (in Chapter 3).

CM Fortran implements operations on conformable arrays by configuring a set
of processors into a logical grid of the appropriate shape for the arrays. Arrays
of many different sizes and shapes can coexist in CM memory, but conformable
arrays are always stored in the same set of processors in the same order. Thus,
elements A (1), B (1), and c (1) all reside in the local memory of the same pro-
cessor, as do A(2), B (2), and C (2), and so on. Each processor executes the
operations on its own set of array elements; no data motion occurs between pro-
cessors.

processor x

A

B

C

i1 2 21212 1

.... 3 4

I 8 113 1201 29
* , . xAiiiiiiii~iii

Notice, though, that if you assign a section of the two-dimensional array D to the
vector C, the system must move data into the appropriate processors before it can
proceed with the assignment.

This fact suggests one of the basic principles of CM programming: operations on
the corresponding elements of conformable arrays are the most efficient use of
the system. Given the CM's distributed memory, the common Fortran 77 practice
of declaring one or a few large arrays and selecting pieces of them as needed
often forces the system to move data into the appropriate processors before act-
ing upon it. It is better, wherever possible, to declare multiple arrays of the same
shape and to operate on their corresponding elements. When you do this, the data
does not need to move to the appropriate processors - it is already there.

November 1991

12 Getting Started in CM Fortran

C naupter . A aimpte rrogram 13

2.3 Input-Output

Program simple. fcm uses the familiar Fortran syntax to retrieve the results of
the array operations. CM Fortran supports all Fortran I/O operations - the
READ, WRITE, and PRINT statements - for CM data as well as for front-end
data. These statements cause CM data to be displayed from the front end or
placed in (or retrieved from) the UNIX file system.

The PRINT statement lets you view all the results stored in array c:

C = A**2 + B**2

PRINT *, 'Array C contains:

PRINT *, C output of CM data

For large vectors or for matrices, you can use a FORMAT statement to improve the
readability of the output:

INTEGER MATRIX (4,4)

PRINT 10, MATRIX

10 FORMAT (419)

You can also retrieve a scalar value from the CM by subscripting a CM array in
the Fortran '77 fashion. Notice that this is a deliberate use of a "mixed-home"
construction: the array element that is referenced with a Fortran 77 subscript is
automatically moved to the front end, where you can view it or use it like any
other scalar value:

PRINT *, 'The third element of array C is ', C(3)

Finally, you can derive a scalar value (and thus a front-end value) by applying an
intrinsic reduction or inquiry function to a CM array. The reduction functions,

such as MAXVAL and SUM, perform a combining operation on an array's elements
and return the scalar result to the front end. The inquiry functions, such as DSIZE

and DUBOUND, return the requested array property as a scalar. Program sim-
ple. f cm displays these scalar results with PRINT statements:

INTEGER AVERAGE

PRINT *, 'The largest of C is ', MAXVAL(C) ' intrinsic

PRINT *, 'The average of C is ', AVERAGE(C) user function

AVERAGE = SUM(ARRAY) / DSIZE(ARRAY)

November 1991

.'L - A e'7 D.A an

14GetngStrdinCsM Fotra

In addition to the PRINT statement, you can also use the Fortran READ and WRITE
statements in exactly the same way as you use them with front-end data. Data
retrieved in this way passes through front-end memory on its way between CM
memory and the UNIX file system.

For large data sets, it is more efficient to bypass the front end and move data
directly, in multiple streams, between CM memory and a file. To perform this
parallel I/O, you use the CM Fortran Utility Library routines.

2.4 Procedures

Procedures are defined and invoked in Fortran 90 in much the same way as in
Fortran 77, but there is - again - a crucial difference in semantics when the
argument is a CM array object. Like the CM array objects referenced in array
operations, an array object passed as an argument is the whole array.

For example, consider the invocation of the two user-defined procedures in pro-
gram simple. fcm:

DIMENSION C(N)

PRINT *, 'The average of C is ', AVERAGE(C) ! function

CALL CUBE(C,N) ! subroutine

These procedure calls look just like procedure calls in Fortran 77. However, since
array C has been established in the main program as a CM array object, the refer-
ences to it as an argument specify all N elements of c, not just the first element.
This difference in the semantics of a procedure call has certain implications for
defining and invoking procedures in CM Fortran.

Declaring Dummy Arrays

As in Fortran 77, the type of an actual argument must match the type of the corre-
sponding dummy argument. In addition, in CM Fortran the shape of the actual
and dummy arrays must match. That is, a dummy array argument must be de-
clared in such a way that its rank and the length of each dimension are the same
as those of the actual array argument passed.

0

November 1991

14 Getting Started in CM Fortran

.r'rL 'I A C';_7 A N
c, bnaupLr . A lFtmplTigrum !

Notice the declaration of the dummy array argument in subroutine CUBE:

SUBROUTINE CUBE(ARRAY, SIZE)
INTEGER SIZE, ARRAY(SIZE)

ARRAY = ARRAY*ARRAY*ARRAY
END

The parameter N, which is the length of array C in the main program, is passed
as an argument to subroutine CUBE, where it specifies the length of dummy array
ARRAY. Because C is to be the actual argument, the dummy argument must be of
rank one and length N. In CM Fortran, it is an error to resize or reshape an array
object across procedure boundaries.

You are not :restricted, however, to declaring a dummy array to match some par-
ticular actual array. A dummy argument can also be assumed-shape, which
means that it assumes the shape of the actual argument. An assumed-shape array
is declared without explicit dimension bounds; you simply pecify a colon for
each dimension, with commas between.

For example, notice the declaration of the dummy ARRAY in function AVERAGE.
The dummy is of rank one, but it can be of any length. When the function is
invoked with array argument C, the dummy assumes the length of C.

INTEGER. FUNCTION AVERAGE(ARRAY)
INTEGER. ARRAY(:)

AVERAGE = SUM(ARRAY) / DSIZE(ARRAY)
END

This particular function returns a scalar result; in fact, since the intrinsic func-
tions SUM and DSIZE return scalars to the front end, the division operation is
executed on the front end. User-defined functions can also be computed entirely
on the CM and return array-valued results (as described in the CM Fortran docu-
mentation set). The behavior of such a function is like that of a subroutine that
takes an array as its first argument and stores its results there.

1.

November 1991

1r

16 Getn Sat i C

Passing CM Array Arguments

The use that a procedure makes of a dummy array determines the home - CM
or front end - of that array. Both subroutine CUE and function AVERAGE use
their dummy arrays in Fortran 90-style array operations, and the arrays are there-
fore assumed to be allocated on the CM:

ARRAY = ARRAY*ARRAY*ARRAY ! from subroutine CUBE

AVERAGE = SUM(ARRAY) / DSIZE(ARRAY) ! from function AVERAGE

Actual array arguments must match the corresponding dummies in home, as well
as in type and shape. It is an error to pass a front-end array to a procedure that
expects a CM array, or to pass a CM array to a procedure that expects a front-end
array.

When a procedure contains array operations, the programmer must see to it that
the actual argument is allocated on the CM. One way to do this is to use the array
in a Fortran 90-style array operation in the calling procedure. Recall that an array
operation is any unsubscripted reference to the array in an expression, assign-
ment, or intrinsic function call. Another way is to declare the dummy argument
as an assume-shape array. Assumed-shape arrays are always taken to be CM
arrays, no matter how they are used in the procedure.

Finally, a third way to force an array onto the CM is to use the compiler directive
LAYOUT. This directive is intended to control the particular way an array is laid
out across (or within) CM processors. It can, for instance, direct the compiler to
lay out the elements of a specified dimension all within the same processor (thus
creating a serial dimension), while laying out the other dimensions across proces-
sors in the usual way. A subsidiary effect of LAYOUT is that it also controls an
array's home.

When the directive applies the keyword: NEwS to any dimension of an array, that
array is allocated on the CM no matter how it is used in the program unit. For
example, the following directive line forces array C onto the CM:

DIMENSION C(N)

CMF$ LAYOUT C (:NEWS)

Cw$s must start in column 1, to indicate that this structured comment is a compil-
er directive. Any array dimension can be laid out in-processor (instead of
cross-processor) by labeling it: SERIAL. If all dimensions are made serial, the
array is allocated. on the front end and cannot be used in array operations.

November 1991

16 Getting Started in CM Fortran

17
Zad -r&Uyrff . A j5rrIGZ I r, Wfrl I

Declaring Local Arrays

Like Fortran 90, CM Fortran permits the dynamic allocation of local arrays in a
procedure. F or example, compare the two arrays declared in this subroutine:

SUBROUTINE X(ARRAY, SIZE)

INTEGER SIZE

REAL ARRAY(SIZE), TEMP(SIZE)

TEMP = ARRAY ! store ARRAY's initial values

. . . various array operations on ARRAY . . .

ARRAY = ARRAY + TEMP ! compute initial values back into ARRAY

END

aRRAX is a straightforward dummy array that stands for an actual passed in at run
time. The array TEMP, however, is a Fortran 90 automatic array. Storage for

TEMP is allocated upon entry to the procedure and deallocated upon exit from the
procedure. Its size might be passed in at run time, as in this example, or it might

be specified with a constant. (Automatic arrays are always allocated on the CM,
regardless of how they are used in the procedure.)

Using Common Arrays

Common arrays can reside either on the front end or on the CM. Since common
arrays are normally used in several program units, the compiler cannot determine
the proper home from their use in the program unit being compiled. It assumes,
therefore, that common arrays are intended for use in array operations and allo-
cates them on the CM unless directed otherwise.

You can override the compiler's default allocation of common arrays in either of
two ways:

Use die compiler directive COlMON to give particular common blocks one
home or the other. For example:

REAL A(N), B(N), C(N), D(N)

COMMON /BLOCK_1/ A,B

COMMON /BLOCK_2/ C,D

CMF$ COMMON CMONLY /BLOCK_1/ ! redundant with default

_k CMF$ COMMON FEONLY /BLOCK_2/ ! C and D are on front end

November 1991

rh~,ntoI A Vu__7 . D vrrrnm

r-ttlin4 Jf-4g in . FLrtrn

The arrays in BLOC_ 1, like all CM arrays, can be used in array operations
on the CM or (at some performance cost) in serial operations on the front
end. The arrays in BLOCK 2, like all front-end arrays, can be used only in
serial operations on the front end.

Compile with the switch -fecommon, which causes common arrays to be
allocated on the front end.

When this switch is used, no common array can be used in an array opera-
tion except those that are constrained to a CM home by a compiler
directive. 'IThe compiler directives LAYOUT and coMMON override the effect
of the compiler switch -fecommon for the particular arrays to which they
apply.

In CM Fortran all the CM common arrays used anywhere in a program must be
declared in the main program. Common arrays that are constrained to the front
end need not be declared in the main program unless they are referenced there.

November 1991

1R

Chapter 3

Selecting Array Elements

The operations discussed so far have affected all the elements of a CM array
object as declared. Fortran 90 defines two methods for selecting only certain
array elements for an operation:

* By value: conditional (or masked) operations include or exclude array
elements depending on their values.

• By position: operations on an array section affect only a subarray of ele-
ments specified by their positions along each dimension of the original
array.

A CM Fortran extension, the FORALL statement, allows you to select array
elements both by value and by position for performing position-dependent
actions on arn array or array section.

The FORALL statement and the array section syntax are especially useful for indi-
cating data motion, such as shifting array elements in a grid pattern, arbitrary
permutations and indexing, and parallel-prefix ("scan") operations.

3.1 Conditional Operations

An array assignment can be made conditional on an array's values by enclosing
the assignment in a WHERE statement. WHRE is the array-processing extension of
the Fortran IF statement: it specifies a logical array (or array-valued expression)
as the test, followed by an array assignment. The arrays in the assignment and the

9
November 1991 19

20i, Getting Started in CM Fotran: . 0
mask array must all be conformable. For example, to avoid division by zero in
an array operation:

WHERE (A.NE.O) C = B/A

You can imagine the system overlaying all the conformable arrays with a mask
to screen out the elements in positions that correspond to the false values of the
test expression. The remaining elements participate in the assignment statement.

zero values
screened out

7 \
A

B

C

| o l2 |14 |O |3 |

....)//

81:::: 4 1 2 1:::: : :::::: 6

I 2 1 3 Ii i l2

Like the Fortran IF, the WHERE statement can be expanded into a construct with
the END WHERE statement and an optional ELSEWHERE. The body of a WHERE

construct can contain multiple array assignments; it cannot contain nested WHERE
statements or external procedure calls. For example:

WHERE (A.GE.O)

A = SQRT(A)
ELSEWHERE

A= 0

END WHERE

In a WHERE-ELSEWHERE construct, you can imagine the system segregating the
elements into disjoint sets and then performing the appropriate array operations
(in parallel) on each of the sets.

9

November 1991

-

20 Getting Started in CM Fortran

rnnt r 2 .Vv-rt A-..m. Zinmn
32 ..- Array i %

3.2 Array Sections

Fortran 90 defines triplet subscripts, a new syntax for specifying a sequence of
subscripts in an array reference. The subscript sequence indicates the subset, or
section, of the array to be operated upon. Not surprisingly, since a triplet replaces
an explicit Do loop, it has the feel of a DO control specification.

array-name (first : last : stride)

A triplet indicates, for one array dimension, the beginning and terminal indices
and the increment. The first and last subscript values default to the declared
bounds of the dimension; stride defaults to 1. If the entire triplet is allowed to
default for every dimension, we are left with simply the array name. The array
names A, B, and c used in the sample program in the previous chapter are the
defaulted forms of A(1: 5: 1), B (1: 5:1), and c (1 :5: 1).

Triplet Examples

The following array references are sections of vector v (10):

V(1:5) ! first five elements
V(6:10) ! last five elements
V(10:1:-l) ! all ten elements in reverse order
V(1:10:2) ! first, third, fifth, seventh, ninth
V(10:1:-2) ! tenth, eighth, sixth, fourth, second

To take a section of a multidimensional array, you specify a triplet for each
dimension, with commas separating them. Any of the triplets can be allowed to
default to the whole dimension, as long as the placeholder commas and colons
are retained to avoid ambiguity. For example, here are some sections of matrix
M(4,6):

M(1:2,:) M(3:4,4:6) M(:,2:6:2)

I I I I

In these examples the section has the same rank (number of dimensions) as its
parent array, although its size and shape are different. To get a section of lower
rank than its parent, you can replace one or more of the triplets with a Fortran 77

November 1991

III

11

22 Geting Sarted n CM ortra

scalar subscript. The scalar subscript
than a sequence of rows or columns:

M(1:2,2)
.

I I I

indicates a single row or column, rather

M(3,:)

r I I I

Using Array Sections

Array sections can be used anywhere that whole arrays are used. As with whole
arrays, sections that are used together in an expression or assignment must be
conformable. For example, here are some array operations on sections of vectors
A(5), B(5), and V(10):

V(1:5) = A**2 + B**2
B = A(5::1:-1)

PRINT *, MAXVAL(B(1:4))
A(2:5) = [10,20,30,40]

WHERE (A(1:3).NE.0) V(1:3)

0
= B(1:3) / A(1:3)

Any array reference that uses triplet notation is a Fortran 90 array reference and
thus causes the parent array to be allocated on the CM.

Array Sections and Data Motion

Array sections are particularly useful for moving data in regular grid patterns in
applications such as convolutions or image rotation. You move data by assigning
one section of an array to another section of the same array or another array. As
in all array operations, the sections must be conformable. (The shape of the par-
ent arrays does not affect the behavior.)

9...

November 1991

-

22 Getting Started in CM Fortran

IY$
e

I

I

Chapter 3.Seeg

For example, to shift vector values to the left:

V(1:9) = V(2:10)

I EiiT..xiM..
/ /

W[]....I..i. .

V(2:10)

V(1:9)

To shift data on more than one dimension:

M(1:3,3:6) = M(2:4,1:4)

Vector-Valued Subscripts

A vector-valued subscript is a form of array section that uses a vector of index
values as a subscript. Since the index values need not be ordered - that is, there
is no fixed stride - this syntax can specify any arbitrary selection of array values
along a dimension. Vector-valued subscripts are useful for vector permutations
and for indexing into a vector or array dimension. (For array permutations, see
the discussion of the FORAL statement, Section 3.3, below.)

For example, if v is a vector of length 10 and P is a permutation of the integers
from 1 to 10, then v = v (P) applies this permutation to the values in v. The state-
ment v (P) V applies the inverse permutation.

The index values can be repeated, which causes element values to be repeated in
the section. For example, if R is the vector [2,6,4,9,91, then v(R) is a five-
element vector whose values are V(2), v(6), v(4), v(9), and v(9), in that
order:

L1~~lKlo. V(R)

.

.0

November 1991

`11�

'111_�

Chapterl3 SelectingArray Elements 23

o~Lf'i~ iJ5- £FL ..ivz r uI_-. -~ uctrting oturieu m ~LVl rrratrn

Vector-valued subscripts can be mixed with triplet subscripts and with Fortran 77
scalar subscripts in an array reference. The rank of the resulting array section is
the number of dimensions indicated with either of the Fortran 90 subscripts, not
counting any with scalar subscripts. For example, given the matrix M (4,6) and
the vector Q = [1,3,4], consider these two array sections:

M(Q,2) M(Q,1:4)

The reference on the left indicates a one-dimensional section of length 3 and the
reference on the right indicates a two-dimensional section of shape [3,4]. The
values in the sections are the shaded elements of the parent matrix. (The values
would be reordered if the indices in Q were, say, [1,4,31 .)

Array Sections as Arguments

Array sections, like any array object, can be passed as arguments to intrinsic
functions and user-defined procedures. Array sections are always CM arrays, be-
cause of the Fortran 90 syntax in the array reference. The dummy array argument
in the procedure must therefore be a CM array, and the actual must match it in
type and shape. For example:

REAL A(100), B(100,100)

CALL SELECT AND SORT(A(1:50)
CALL SELECT ANDSORT(A(51:100)

CALL SELECTANDSORT(B(1,1:50)

END

SUBROUTINE SELECTAND SORT(ARRAY)
REAL ARRAY (50)

various array operations on ARRAY . .

END

e.
November 1991

'A

I I

1111111

I 11

W' - - _J

rlhnntr .lor.inV Arprn, Flomantt

The dummy argument in this subroutine is a vector of 50 real elements, used in
CM array operations. The actual arguments in the three calls to the subroutine are
also 50-element real vectors, allocated on the CM because of the triplet syntax in
the array reference.

You could also declare the dummy argument as an assumed-shape array:

SUBROUTINE SELECT AND SORT(ARRAY)
REAL ARRAY(:)

In this case, the actual arguments would have to be real vectors allocated on the
CM, but they could be of any length.

3.3 The FORALL Statement

FORALL, a CM Fortran extension to Fortran 90, is the array-processing feature
that looks most like a DO loop. A FORALL statement defines one or more index
variables and uses them in an assignment statement, thus indicating action that
depends on the positions of the target array elements.

For example, to give each element of vector v its own index value:

FORALL (I=1:N) V(I) = I

Similarly, to initialize a matrix with sequential integers in Fortran array-element
order:

FORALL (I=1:M,J=1:N) A(I,J) = I + (J-1) * M

2 6 10

3 7 11

4 8 12

Or, to initialize matrix H to contain a Hilbert matrix of size N:

FORALL (I=1:N,J=1:N) H(I,J) = 1.0 / REAL(I+J-1)

9
November 1991

9

zYri I JU I -. II &4 Y -UI I .U s

There is one crucial semantic difference between FORALL statements and DO con-
structs. The individual assignments in a FORALL statement are executed in
undefined order but as if simultaneously.

* Since the individual assignments need not be sequential, they can be per-
formed in parallel on the CM.

* Since the assignments are as ifsimultaneous, even if performed serially on
the front end, the program need not take action to save the initial value of
an element that is both a target of one assignment and the source of anoth-
er. For example, you can transpose matrix elements without explicitly
passing them through a temporary location:

FORALL (I=1:N,J=1:N) H(I,J) = H(J,I)

FoRALL is not considered an array operation for the purpose of determining the
homes of arrays. The assignment can involve either front-end arrays or CM
arrays, and the homes of the arrays determine whether the statement executes on
the front end or on the CM. It is possible - but usually not wise, for performance
reasons - to mix front-end and CM arrays in a FORALL assignment, since in this
case the CM arrays are moved element by element to the front end.

Array Assignments in FORALL

In CM Fortran, the assignment in a FORALL statement (and in a DO construct) can
involve whole arrays and array sections as well as individual elements. For
example, to spread a vector v along the first dimension of a matrix H:

DIMENSION H(N,M), V(M)

FORALL (I=1:N) H(I,:) = V

As in any array operation, the arrays in a FORALL array assignment must be con-
formable. In this example, the vector of length M is assigned to each row of the
matrix. The rows are also of length M.

While FORALL normally does not determine an array's home, the two arrays in
this example are referenced with triplet subscripts (implicitly in the case of v).
These Fortran 90-style references are sufficient to cause the two arrays to be
allocated on the CM, and the FORALL statement therefore executes in parallel on
the CM.

e.·

November 1991

14 /2n~r C~rtn/ i, f'Afnk~

napuper 3. aelecung Array Lements /

Conditional FORALL Statements

A FORALL statement can contain a mask expression, which prevents certain ele-
ments from being assigned. The effect is similar to embedding an IF statement
in a DO construct.

The mask is always a scalar-valued expression, even when the assignment refer-
ences whole arrays or array sections. For example, to avoid division by zero in
a FORALL statement:

FORA:LL (I=1:N, A(I).NE.O.0) B(I) = 1.0 / A(I)

Similarly, to clear the part of a square matrix below the diagonal:

FORALL (I=1:N, J=1:N, I.GT.J) H(I,J) = 0.0

Data Motion with FORALL

FORALL is a powerful feature for expressing data motion. It can mimic the behav-
ior of other CM Fortran features, such as array sections and many of the intrinsic
functions shown in the next chapter. Its real value, however, is in expressing pat-
terns of data motion that are otherwise difficult to express as parallel operations
in CM Fortran.

For example, FORALL can perform, in parallel, arbitrary permutations of multi-
dimensional arrays. The following statement indexes into matrix H, using index
arrays x and Y:

FORAL]L (I=1:N,J=1:M) G(I,J) = H(X(I,J), Y(I,J))

FORALL can also operate, in parallel, on irregularly shaped parts of an array. For
example, to extract the diagonal elements of a matrix and assign them to a vector:

FORALL (I=1:N) V(I) = H(I,I)

Z::::~:~mi8::i : z;;

9
November 1991

.......... III
....V.........

...........-

---- MM-1""""""A.. ... I.........

~llr- l 2 C- Ad.. CI7 A s'%~'1

f7.ttfi. Jt&Lfg in rMl PnJfr-#u -.r&, , &G, In J ' Ut & un Be

To shift the lower triangle of a matrix by one position:

FORALL (I=1:N, J=1:I-1) H(I,J) = H(I, J+1)

Finally, FORALL can express parallel prefix, or scan, operations along an array
dimension. Scan operations apply some combinator cumulatively along a dimen-
sion, giving each element the combination of itself and all previous elements
(like computing the running balance of a checkbook). For example, to express an
add-scan of array A, compute the sum-reductions of progressively larger sections
of A:

FORALL (I=1:N) A(I) = SUM(A(1:I))

Parallel vs. Serial Execution

When FORAL is applied to CM arrays, it usually executes in parallel on the CM.
There are exceptions, however, as noted in the CMFortran Release Notes for the
current release. As new capabilities are added to FORALL, they sometimes
execute serially in the early implementations, but execute in parallel in later
releases. A set of utility routines, described in the CM Fortran User s Guide,
allows you to work around any restrictions on the parallel execution of FORALL
statements.

November 1991

- -- - --

s
,,:x'x

W
E

-

7-

IR

Chapter 4

Array Transformations

CM Fortran supplies a rich set of intrinsic functions for manipulating, describing,
and transforming arrays. The intrinsic functions are of four different kinds:

* Elemental intrinsics. These functions are the Fortran 77 intrinsics (exclud-
ing the character functions); they can take either a scalar value or an array
as an argument.

a Inquiry intrinsics. These functions, illustrated earlier in the discussion of
procedures, return information about the properties of an array or of a
specified array dimension. They include DSIZE, DSHAPE, RANK,
DUBOUND, and DLBOUND.

* Location intrinsics. These functions determine the location of certain array
elements, such as the maximum numeric value or the first true value. They
include MAXLOC, MINLOC, FIRSTLOC, LASTLOC, and PROJECT.

Transformational intrinsics. These functions take array arguments and
apply some transformation to them, returning scalars in some cases and
arrays in others. The result arrays are often a different shape from the argu-
ment arrays.

All these functions are described in full in the CM Fortran documentation set.
This chapter gives a brief overview of the transformational intrinsics to suggest
the power and convenience of array-processing in CM Fortran. The array trans-
formations you can perform are:

* Data movement

· Array reduction

* Array construction

9 · Array multiplication

November 1991 29

30 Getting Started in CM Fortran

4.1 Data Movement Functions

Data movement functions reposition the elements of an array. They include
CSHIFT ("circular shift"), EOSHIFT ("end-off shift"), and TRANSPOSE. This
section describes CSHIFT to illustrate the data movement functions.

CSHIFT takes as arguments an array object, an integer indicating the dimension
on which to shift element values, and another integer or array indicating the shift
offset:

CSHIFT(ARRAY, DIM, SHIFT)

Given a 3 x 5 array A, the statement

A = CSHIFT(A, DIM=2, SHIFT=-1)

shifts the values in the rows (the second dimension) of A one column position in
the negative direction (to the right), wrapping the right-most values around to the
first column. (Notice that CM Fortran allows you to identify the arguments in
intrinsic function calls with predefined keywords). The effect of the statement
above on array A is:

1

1

234
234
234

5 > A = 5
5 5

123
123
123

4
4

4

The SHIFT argument to CSHIFT can also be an array, indicating a possibly dif-
ferent shift distance for each row, column, or plane of the argument array. The
SHIFT array must be of rank one less than the argument array. For example,

A = CSHIFT(A, DIM=2, SHIFT=[1,2,3])

has the following effect on A:

3 4 5 1
4 5 1 2

51 2 35123]

(shift by 1)

(shift by 2)

(shift by 3)

(Notice the use of an array constructor as a CM array argument to an intrinsic
function.)

0

November 1991

[

5
5 v
5

123412341234
2

3

4

-

30 Getting Started in CM Fortran

: t: e.. :. I i. o . n.s : I:- ..::0
Calls to CSHIFT can
have each element of

A = CSHIFT

$ C:SHIFT

$ CSHIFT
$ CSHIFT

be nested to access diagonal neighbors. For example, to

a matrix get the sum of its four diagonal neighbors:

(CSHIFT(A,1,1),
(CSHIFT(A,1,1),
(CSHIFT(A,1,-1),
(CSHIFT(A,1,-1),

2, 1)

2, -1)

2, 1)

2, -1)

+
+
+

4.2 Array Reduction Functions

The reduction functions take an array and "summarize" it by applying some com-
bining operation across its elements, thus reducing the array either to a scalar or
to an array of lower rank. They include the numeric functions MAXVAL, MINVAL,

SUM, PRODUCT and the logical functions ANY, ALL, and COUNT. This section
describes MAXVAL and ANY to illustrate the behavior of the reduction functions.

The MAXVAL Function

Like the other numeric reduction functions, MAXVAL takes an array object, an
optional integer that specifies the dimension to reduce, and an optional array
mask.

MAXVAL(ARRAY, DIM, MASK)

For example, consider a two-dimensional array A:

1 5 3 7

A = 4 2 6 3

9 2 1 5
1

When you supply only the array argument (either a whole array
section), the result is a scalar and is returned to the front end:

or an array

I = MXVAL(A)

J = MXVAL(A(:,2:3)) ! J= 6

If a dimension argument is supplied, the result is a CM array whose rank is one
less than the argument array. A reduction on the first dimension of A yields a

November 1991

Chapter 4. Aay Transformations 31

3s Ge-t-ng-Sarted-in-M-Fortra

4-element vector containing the maximum of each of the columns; a reduction
on the second dimension yields a 3-element vector containing the maximum of
each of the rows.

15 37
A = 42 6 3

9215

K = MAXVAL(A, DIM=1)

L = MAVAL(A(:,2:3), DIM=2)

! K = [9,5,6,7]

! L = [5,6,2]

The mask argument indicates which elements to compute into the summary
result. The mask must be a logical array or array-valued expression of the same
shape as the argument array. For example, to find the highest value in A that is
not greater than 8:

I = MAXVAL(A, MASK = A .LE. 8) ! I = 7

Similarly, if anrray B is specified as a mask for A (T indicates .TRUE. and a dot
indicates . FALSE.):

1 5

A = 4 2

9 2

3 7

6 3

1 5

B [T

T T

T T -

Then,

J = MAXVAL(A, MASK=B) ! J= 7

K = MAXVAL(A, DIM=1, MASK=B) ! K = [4,5,1,7]

1

QO

November 1991

32 Getting Started in CM Fortran

L napter ,;. Array ransurmianns 33

The ANY Function

Like the other logical reduction functions, ANY takes an array object and an
optional integer that specifies the dimension to reduce. The logical array argu-
ment is identified with the keyword MASK; these functions work only on the
elements that are. TRUE.

ANY(MASK, DIM)

For example, consider the logical array c:

C = T · T
* T · T

ANY returns the scalar value. TRUE. if any of the elements in the array (or sec-
tion) is true. If a dimension is specified, the result is a CM array of rank one less
than the argument array:

X =- ANY(MASK=C) !X = T
XX = ANY(MASK=C, DIM=2) ! XX = [T,T,T
XXX = ANY(MASK=C(:,1:3), DIM=1) ! XXX = [F,T,F]

4.3 Array Construction Functions

The construction functions construct new CM arrays by using the elements in
existing arrays in specified ways.

* RESHAPE takes an array and constructs a new array with the same
elements but a different shape.

* DIAGONAL takes a vector and constructs a matrix whose diagonal elements
are those of the vector and whose other ("fill") elements are all a specified
or default value.

* MERGE combines two conformable arrays into a new array by means of an
element-wise choice guided by a logical mask.

November 1991

,L___ Ac... Ty Id----. rr

_jTHe~~~~ ~~~~~~~~~~~Lmus rLg Af-ur&u Sri ,v rlr' un

* PACK and UNPACK behave as gather and scatter operations. PACK gathers
an n-dimensional array into a vector; UNPACK scatters a vector into an

n-dimensional array.

* REPLICATE and SPREAD construct arrays by using a specified number of
copies of the argument array. SPREAD adds a new dimension to accommo-
date the copies; REPLICATE lengthens one of the existing dimensions.

This section introduces the array construction functions by illustrating the behav-
ior of RESHAPE and SPREAD.

The RESHAPE Function

With the CM system's distributed memory, reshaping arrays is not as routine a
practice as it is with centralized-memory machines. Reshaping a single large
array should not be used as a substitute for the separate declarations of smaller
arrays, since reshaping entails actual data movement in CM memory rather than
a substitution of indices.

Array reshaping in CM Fortran is useful when the algorithm requires manipulat-
ing the same set of data in more than one shape. The intrinsic function RESHAPE
creates a new array with the same elements as the argument array, but with a
different shape and perhaps a different size. Its format is:

RESHAPE(MOLD, SOURCE, PAD, ORDER)

The mold argument specifies the target shape; it is a vector of positive integers,
each indicating the extent of a target dimension. Unless the call specifies other-
wise, the source array elements are placed in the target array in array-index order.
For example, assuming the existence of a 3 x 4 array x, the statement

X = RESHAPE(MOLD=[3,4], SOURCE=[1:12])

reshapes the source vector and places the following values in x:

1 4 7 10
2 5 8 11
3 6 9 12

(Note again that CM array arguments to the intrinsic functions can be specified
with array constructors.)

November 1991

'1A £n+E"u ~ (1inwP ;" AX/11 fU

Cnapter 4. Array ransjormanons 33

Any source array values that do not fit into the mold are ignored. For example,
the result array x in the example above would be the same if SOURCE had been
[1:20].

If the source array is smaller than the mold, the call must include the pad argu-
ment. PAD is an array of the same type as SOURCE and any size or shape. When
the source array elements are used up, the system uses one or more copies of the
pad array elements (in array-index order) to fill the target array. For example:

Y =RESHAPE(MOLD=[3,4], SOURCE=[1:5], PAD=[10:12])

places the following values in the 3 x 4 array Y:

1 4 11 1
Y= 2 5 12 12

3 10 10 10

The order argument is used to change the order in which the target dimensions
are filled. The default order is the vector [1: n]; the alternative order for a two-
dimensional mold would be [2, 1], with the following effect:

Z = RESHAPE([3,4], SOURCE=[1:5], PAD=[10:12], ORDER=[2,1])

1 2 3 4

Z = 5 10 11 12
10 11 12 10

The SPREAD Function

SPREAD takes a source array and creates a new array with an additional dimen-

sion. It then broadcasts a specified number of copies of the argument array along
the specified dimension of the new array. Its format is:

November 1991

F'lL __ X I ri lr ___-. rr

36 GettingStarteinCMForta

SPREAD(SOURCE, DIN, NCOPIES)

For example, if the source array is the vector

A = [4, 2, 6, 3]

Then,

B = SPREAD(A, DIM=1, NCOPIES=3)

replicates the values in A along the first dimension ofa new 3 x 4 array. The value
of B in this assignment statement becomes:

[4 2 6 3
B= ' 2 6 3

'4 2 6 3

Similarly, spreading three copies of the same source vector along the second
dimension of a new array

C = SPREAD(A, DIM=2, NCOPIES=3)

results in assigning the following values to c:

4 4 4

2 2 2
C = 6 6 6

3 3 3

When the argument array is two-dimensional, the result array is three-dimension-
al. For example, spreading two copies of B along the third dimension

D = SPREAD(B, DIM=3, NCOPIES=2)

results in the following 3 x 4 x 2 array, assigned to D:

D 4 2 63 3

4 2 6 3

4 2 6 3

November 1991

36 Getting Started in CM Fortran

Chapte 4. Arr~8ay Transfbrmaons 37

4.4 Array Multiplication

The array multiplication functions are DOTPRODUCT for vectors and mTMUL for

vectors or matrices.

For example, given two vectors such as the following array constructors, their
vector dot product is:

I = DOTPRODUCT([1,2,3], [2,3,4) !I = 20

And, to compute the matrix-matrix product of two arrays, such as A and B,

1 2 3A = 2 3 4
1 2

B = 2 3

3 4

the code and its effect are:

C = MATMUL(A,B)

[14 201
C- 20 29

Many other mathematical procedures are provided as subroutines in the CM
Scientific Software Library (CMSSL). These are described in the CM documenta-
tion set.

November 1991

0
Chapter 4. Aray ansfbrmations 37

9

0/

Chapter 5

Sample Programs
....:..-:R

This chapter presents several very simple programming examples in CM Fortran.

* A prime number sieve

* A solver for Laplace's equation

5.1 Prime Number Sieve

Beginning on the following page is a program that finds the prime numbers in a
set of numbers. Three versions of the program are presented for comparison: a
serial version and two alternative parallel versions.

November 1991

39

....................... ------ -------.................. --

Primes: Fortran 77 Version

PROGRAM FINDPRIMES

INTEGER I, J, N

PARAMETER (N = 999)

LOGICAL PRIMES(N), CANDID(N)
C

C Initialization

C

DO 1 I=1,N

PRIMES(I) = .FALSE.
CANDID(I) = .TRUE.

1 CONTINUE

CANDID(1) = .FALSE.

C

C Loop: Find next valid candidate, mark it as prime,
C invalidate all multiples as candidates, repeat.

C

2 DO 4 I=1,SQRT(REAL(N))

IF (CANDID(I)) THEN *.
PRIMES(I) = .TRUE.

DO 3 J=I,N,I
CANDID(J) = .FALSE.

3 CONTINUE

END IF

4 CONTINUE

C

C At this point, all valid candidates are prime
C

.DO 5 I=SQRT(REAL(N))+1,N

PRIMES(I) = CANDID(I)
5 CONTINUE

C

C Print results
C

DO I=1,N
IF (PFIMES(I)) PRINT *,I

END DO
END

November 1991

40 Getting Started in CM Fortran

_ bruycr J. Lupryriv uru)ms 41

Primes: First CM Fortran Version

This first parallel version is a straightforward translation of the serial program.
Although it is much faster than the serial program, it is not the fastest possible
implementation.

PROGRAM FINDPRIMES 1

IMPLICIT NONE ! suppress implicit typing rules
INTEGER I, N, NEXTPRIME

PARAMETER (N = 999)

LOGICAL PRIMES(N), CANDID(N)

C Initialization

C

PRIMES = .FALSE.

CANDID = .TRUE.

CANDID(1) = .FALSE.
C

C Loop: Find next valid candidate, mark it as prime,
C invalidate all multiples as candidates, repeat.
C Notice support for DO WHILE and END DO.
C

NEXTPRIME = 2

DO WHILE (NEXTPRIME .LE. SQRT(REAL(N)))
PRIMES(NEXTPRIME) = .TRUE.

CANDID(NEXTPRIME:N:NEXTPRIME) = .FALSE.
NEXTPRIME = MINVAL([1:N], DIM=1, MASK=CANDID)

END DO
C

C At this point, all valid candidates are prime.
C

PRIMES(NEXTPRIME:N) = CANDID(NEXTPRIME:N)
C

C Print results
C

PRINT *, 'Number of primes:', COUNT(PRIMES)

DO I=1, N

IF (PRIMES(I)) PRINT *, I
END DO

END

November 1991

lnhnntAY C ~!"w"Z PwsrrwxrwC A1

42 Getting Started in CM Fortran

Primes: Second CM Fortran Version

This parallel version uses a different approach from the two programs just

shown. This program is very fast because it uses more processors than the first
parallel version.

PROGRAM FINDPRIMES 2
IMPLICIT NONE

INTEGER I, N, NN

PARAMETER (N = 500)

INTEGER TEMP1(N,N), TEMP2(N,N)

LOGICAL CANDID(N,N), PRIMES(N)

CANDID = .FALSE.

FORALL (=1:N) TEMP1(I,:) = 2*I+1

FORALL (=1:N) TEMP2(:,I) = 2*I+1
C

C The temporary 2-dimensional arrays are now modulated

C element by element. If an element in TEMP1 is not a

C multiple of the corresponding element of TEMP2, or (for

C the sake of an easily generated argument to the upcoming

C ALL instrinsic) the element in TEMP1 is greater than or

C equal to the corresponding element in TEMP2, then the

C corresponding element in the CANDID array is set.

C

WHERE (((MOD(TEMP1,TEMP2) .NE. 0)

$.AND. (TEMP1 .GT. TEMP2))

$.OR. (TEMP1 .LE. TEMP2)

$ CANDID = .TRUE.
END WHERE

C

C Perform an AND across the second dimension of CANDID.

PRIMES = ALL(CANDID, DIM=2)
C

C Print results

PRINT *, 'Number of primes:', COUNT(PRIMES)+1

PRINT *, 2
DO I=1,N

IF (PRIMES(I)) PRINT *, 2*I+1
END DO
END

November 1991

t napter . ampe rrogrum

5.2 Laplace Solver

This program solves Laplace's equation

v 2f = o

on the unit square (0,1] x [0,1]), subject to the boundary condition that
f= 1 at y = 1 andf= 2 along the rest of the boundary. This program uses the
5-point Jacobi relaxation method, with f initially set to 0 on the interior.

PROGRAM LAPLACE

PARAMETER (MAXX=32)

PARAMETER (MAXY=MAXX)

REAL F(MAXX,MAXY),DF(MAXX,MAXY)

LOGICAL CMASK(MAXX,MAXY)

REAL RMSERROR, MAXERROR
INTEGER ITERATION

C

C Initialize mask and F for boundaries and interior
C

CMASK = .FALSE.

CMASK(2:MAXX-1, 2:MAXY-1) = .TRUE.

F = 2.

F(:,MAXY) = 1.

WHERE (CMASK) F = 0.

MAX ERROR = 1.

ITERATION = 0

C

C Iterate until MAX ERROR < 1.E-3

C

DO WHILE: (MAX_ERROR.GT.1.E-3)
ITERATION = ITERATION + 1

C

C Compute DF, the change at each iteration, and update
C

DF = 0.

WHERE: (CMASK)

DF = 0.25*(CSHIFT(F,1,1)+CSHIFT(F,1,-1)+
S CSHIFT(F,2,1) + CSHIFT(F,2,-1)) - F

F = F + DF
END WHERE

November 1991

/eL -_. C 2_ ^_Z D a AS

44 Getting St~~~~~~~ated~ in- ~ CM~~orfran~~"",.-,.

C

C Compute the RMS and Maximum errors.
C

RMSERROR = SQRT(SUM(DF*DF)/((MAXX-2)*(MAXY-2)))

MAXERROR = MAXVAL(DF,MASK=CMASK)

C

C See if we should print things out
C

IF (MOD(ITERATION,10).EQ.0) THEN

WRITE (6,*) ITERATION,RMS_ERROR,MAX_ERROR
END IF

END DO

C

C Write the final iteration count

C

WRITE (6,*) ITERATION,RMSERROR,MAXERROR

END

November 1991

44 Getting Started in CM Fortran

A
ALL intrinsic function, 31

ANY intrinsic function, 33

array arguments, 14
array constructors as, 11, 30
array objects as, 15, 16
array sections as, 24
assumed-shape, 15, 25

using keywords with, 30
array constructors, 11
array homes

array constructors, 11
assumed-shape arrays, 16

automatic arrays, 17
common arrays, 17

defined, 4
determined by -fecommon switch, 18
determined by character type, 10
determined by COMMON directive, 17

determined by LAYOUT directive, 16
determined by use, 4, 16, 22, 24
mixed-home operations, 5, 13

of array arguments, 16
array objects, 1, 21

array operations, 1, 10

array references
Fortran 77-style, 2
Fortran 90-style, 2, 21, 23

array sections, 21
as arguments, 24

rank of, 22, 24
assumed-shape arrays, 15, 25

automatic arrays, 17

C

CM, synonym for parallel processing unit, 4

cmf compiler command, 9
common arrays, 17
COMMON directive, 17

communication, interprocessor
avoiding with conformable arrays, 12
three kinds of, 4
when reshaping arrays, 34
with sections of nonconformable arrays, 12

compiling programs, 9
conditional operations, 19, 27, 31
conformable arrays, 11, 22

COUNT intrinsic function, 31

CSHIFT intrinsic function, 30

D

data motion
using array sections, 22
using FORALL, 27
using intrinsic functions, 30, 35

data parallel processing, 3, 12, 34
declarations, array, 10
DIAGONAL intrinsic function, 33

directives. See LAYOUT, COMMON

DLBOUND intrinsic function, 29
documentation for CM Fortran, 6
DOTPRODUCT intrinsic function, 37
DOUBLE COMPLEX data type, 10

DSIIAPE intrinsic function, 29
DSIZE intrinsic function, 29
DUBOUND intrinsic function, 29
dynamic allocation of local arrays, 17

E

elemental operations, 5
EOSHIFT intrinsic fimunction, 30
executing programs, 9

November 1991

0

Index
. _,.. ; .·..

45

...... :....-,

F

FIRSTLOC intrinsic function, 29
FORALL statement, 25

FORMAT statement, 13

front-end computer, 3
synonym for serial control processor, 4

functions, 14

input-output
parallel, 14
UNIX file system, 13

intrinsic functions
See also functions by name
argument keywords, 30
array construction, 33
array multiplication, 37
array reduction, 31
data movement, 30
elemental, 29
inquiry, 29
location, 29
transformational, 29

L

LASTLOC intrinsic function, 29
LAYOUT directive, 16

parallel-prefix operations, 28
partition manager, 3
permutations, 23, 27
PRINT statement, 13
procedures, 14

PRODUCT intrinsic function, 31

PROJECT intrinsic function, 29

R

RANK intrinsic function, 29
READ statement, 13

REPLICATE intrinsic function, 34
RESHAPE intrinsic function, 34

S
scan operations, 28
serial dimensions, 16
SPREAD intrinsic function, 35
subroutines, 14

SUM intrinsic function, 31

T
TRANSPOSE intrinsic function, 30
types supported, 10

U

UNPACK intrinsic function, 34

M utility routines, 6

MATMUL intrinsic function., 37

MAXLOC intrinsic function, 29
MAXVAL intrinsic function., 31

MERGE intrinsic function, 33

MINLOC intrinsic function, 29
MINVAL intrinsic function., 31

p

PACK intrinsic function, 34

V

vector-valued subscripts, 23
virtual processing, 3
virtual processors, 3

W
WHERE statement, 19

WRITE statement, 13

s
November 1991

S

46 Getting Started in CM Fortran

-

Thinking Machines Corporation a
245 First Street
Cambridge, MA 02142-12'14
(617) 234-1000

