
The
Connection Machine
System

CM-5 C* User's Guide__ .--------- -------
Version 7.1

May 1993

Thinking Machines Corporation
Cambridge, Massachusetts

Frst printing, May 1993

The informatiaon in this document is subject to change without notice and should not be constnued as a
commitmentby ThinngMacMachines po Thk Machinesreservestheright toae changesto any
product described herein

Although the information inthis document has beenreviewed and is believed to bereliable, Thinldng Machines
Coaporation assumes no liability for erns in this document Thinklng Machines does not assume any liability
arising from the application or use of any information or product described herein

Connection Machine is a registered traemark of Thinking Machines Corporation.
CM and CM-5 are trademarks of Thinking Machines Corpoation.
CMosr, Prism, and CMAX are trademaks of Thinking Machines Corporation.
C*4is a registered trademark of Thinking Machines Corporation
CM Fortran is a trademark of Thinking Machines Corporation
CMMD, CMSSL, and CMXIl are tdemarks of Thinking Machines Corporation.
Thinking Machines is a registered trademark of Thinking Machines Corporatin.
SPARC and SPARCstation are trademarks of SPARC intematinal, Inc.
Sun, Sun,4, and Sun Workstation are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratoies, Inc.
The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1990-1993 by Thinking Machines Corporatin. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-1000

Contents

About This Manual .. viU

Custom Support .. ix

Chapter 1 Introduction .. 1

1.1 Developing a C* Program .. 1

1.2 Compiling a C* Program ... 1

1.3 Executing a C* Program ... 2

1.4 Debugging a C* Program ... 2

Chapter 2 Developing a C* Program 3

2.1 C* .cs Files ... 30w~~ ~~2.1.1 C* Keywords ... 3
2.1.2 Reserved Identifiers 4

2.2 Header Files .. 4

2.2.1 The <math.h> File 5

2.2.2 The <stdlib.h> File 5

2.2.3 The string.h> File 6

2.2.4 Header Files and C* Keywords 6

2.3 Timing a Program .. 7

2.3.1 Hints on Using the Timing Utility 9

2.4 Calling CM Libraries .. 9

2.4.1 CMX11 10

2.4.2 CM/AVS ... 10

2.4.3 /0 .. 10

2.4.4 CMMD 13

2.5 Calling CM Fotran 13

2.5.1 Overview .. 13

2.5.2 In Detail ... 14

Include File 14

Calling the Subroutine 14

What Kinds of Variables Can You Pass? 14

Passing Parallel Variables 15

Version 7.1, May 1993

Copyright © 1990-1993 T7inking Machines Corporation iii

iv CM-5 C* User's Guide

Passing Scalar Variables 16

Freeing the Descriptors 16

An Example 16

2.6 Writing Functions that Are Callable from CM Fortran 17

2.6.1 Names ... 17

2.6.2 Shapes ... 18

2.6.3 Parallel Arguments 18

2.6.4 Scalar Arguments 19

2.6.5 An Example .. 21

Chapter 3 Compiling a C* Program 23

3.1 The Compilation Process 23

3.2 Basic Options ... 24

3.2.1 Choosing the Compiler The -cm2, -cm200, -cmsim,

and -cm5 Options 26

3.2.2 Getting Help: The -help Option 27

3.2.3 Printing the Version Number: The -version Option 27

3.2.4 Compiling for CM-Ss with or without Vector Units:

The -vu, -vecunit, and -sparc Options 27

3.3 Options in Common with cc:

The -c, -D, -g, -I, -1, -L, -o, and -u Options 28

3.4 Advanced Options 28

3.4.1 Using Another C Compiler The -cc Option 28

3.4.2 Debugging Your Program: The -cmdebug Option 28

3.4.3 Obtaining Performance Data: The -cmprofile Option 29

3.4.4 Displaying the bin, lib, include, and temp Directories:

The -dirs Option 29

3.4.5 Displaying Compilation Steps: The -dzyrnm Option 30

3.4.6 Putting . c Files through the C* Compiler:

The -force Option 30

3.4.7 Keeping an Intermediate File: The -keep Option 30

3.4.8 Using CMMD: The -node and -cmmdroot Options 30

3.4.9 Displaying Names of Overloaded Functions:

The -overload Function 31

3.4.10 Creating Assembly Source Files: The -s Option 31

3.4.11 Changing the Location of Temporary Files: The -temp Option.. 31

3.4.12 Turning On Verbose Compilation:

The -v or -verbose Option 32

3.4.13 Turning Off Warnings: The -warn Option 32

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Cont~·g~i~pls~s~olABJ~ents

3.4.14 Turning On Warnings about Undeclared Functions:

The -wimplicit Opion
3.4.15 Specifying Options for Other Components: The -z Option.

3.5 nkin ...

3.5.1 Names of C* Run-Timune Libraries

3.5.2 Intermediate Files......................................

3.5.3 Creating Libraries

3.6 Compiling and Linking a C* Program

that Calls CM Fortran ...

3.7 Compiling CM Fortan Programs that Call C*

3.8 Symbols ..

3.9 Using make..

Chapter 4 Executing a C* Program

4.1 Executing the Program Directly

4.2 Obtaining Batch Access

4.2.1 Submitting a Batch Request

4.2.2 Options for qsub
Specifying a Queue

Receiving Mail

Setting the Priority

Specifying Output Files

4.2.3 Other Commands...................

4.2.4 UNIX Batch Commnds..............

4.3 Executing a C* Program on a Sun-4

................... 37

................... 37

................... 38

................... 38

................... 39

................... 39

....................39

.................... 40

............... 1... 40

.................. 40

.... 111............ 40

................... 41

Chapter 5 Debugging a C* Program

5.1 Compiling for Prism.................

5.2 Starting Prism......................

5.2.1 Graphical Prism

5.2.2 Commands-Ony Prismn......

5.3 Using Prism

5.4 Loading and Executing Programs......

5.5 Debugging

5.6 Visualizing Data

43

43

44

44

44

45

46

46

46

485.6.1 Visualizing Parallel Objects

Version 7.1, May 1993
Copyright © 1990-1993 Thiinng Machines Corporation

32

32

33

33

33

34

35

36

36

36

Contents v

...............

..............

...............

-CM--C--er---

5.7 Analyzing a Program's Performance

Appendix Man Pages .
Cs

cscomm.h.....

math.h
stdarg.h.....
stdlib.h
stzing.h.....

Index 73

Version 7.1, May 1993
Copyright) 1990-1993 Thinking Machines Corporation

*'1I

49

51

53

59

63

67

69

71

vi CM-5 C * User f Guide

.............
............
....

............
.............
............
............

..............
...

.............

.............
..............
..............

..........
:

...........

...........
...........
...........
..........

..........

..........

..........

..........

..........

..........

..........

About This Manual

Objectives of This Manual

This manual describes how to develop, compile, execute, and debug C*
programs on a CM-5 Connection Machine system.

Intended Audience

Readers are assumed to have a working knowledge of the C* language and of the
UNIX operating system.

Organization of This Manual

Chapter 1 Introduction
Chapter 1 is a brief overview.

Chapter 2 Developing a C* Program
This chapter describes C* libraries and associated header
files, and explains how to call CM library functions and CM
Fortran subroutines from a C* program.

Chapter 3 Compiling a C* Program
Chapter 3 describes the C* compiler and its command line
options.

Chapter 4 Executing a C* Program
Chapter 4 describes how to run a C* program.

Chapter 5 Debugging a C* Program
This chapter gives an overview of how to debug a C* pro-
gram in Prism, the Connection Machine's programming
environment.

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation VIi

C-S CU s

Appendix Man Pages
The appendix contains man pages for the cs compiler com-
mand and C* header files.

Associated Documents

See the C* Programming Guide for a description of the C* language.

The manual Getting Started in C* provides an overview of C* for beginning
users.

The manual CM-5 C* Performance Guide provides information on how to
increase the performance of your C* program on the CM-5.

Notation Conventions

The table below displays the notation conventions used in this manual:

Convention Meaning

bold typewriter

italics

typewriter

% boldface

C* and C language elements, such as keywords,
operators, and function names, when they appear
embedded in text. Also UNIX and CMOST com-
mands, command options, and file names.

Parameter names and placeholders in function and
command formats.

Code examples and code fragments.

In interactive examples, user input is shown in
boldface and system output is shown in r egu-
lar typewriter font.

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Vlll CM-5 C User 's Guide

I'

Customer Support
------------- --:-- -----------.-' -...........-_ -_ _ _ _ -

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for suppor. Otherwise, please contact Thinking Machines'
home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-supportthink.com

ames!think!customer-support

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation ix

Chapter 1

Introduction
-E j-

- 11iI---~~I i Ia I ~IIim

C* is an extension of the C programming language designed for the Connection
Machine data parallel computing system. This chapter presents an overview of
the process of developing, executing, and debugging a C* program on a CM-5
system. The rest of this manual goes into the process in more detail.

1.1 Developing a C* Program

Develop C* source code in one or more files. Use the suffix .cs if the file con-
tains parallel code or any other features that C* adds to Standard C (for example,
the new <? = and >?= operators). Chapter 2 describes facilities for developing a
C* program. It also describes how to call functions in CM libraries, as well as
CM Fortran subroutines.

1.2 Compiling a C* Program

Compile the files by issuing the command cs. The command can take various
options, some of which are identical to options for the C compiler cc. Chapter
3 describes the compiler options and the compiling process in detail.

Version: 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation 1

2 CM-S-C*-User-- -G--de

1.3 Executing a C* Program

You execute a C* program on a CM-5 partition manager, just as you would any
UNIX program or command. You can also submit the program as a batch request
to NQS, the CM's batch system.

Executing a C* program is discussed in more detail in Chapter 4.

1.4 Debugging a C* Program

You can debug and analyze the performance of your C* program using Prism,
the CM programming environment. Prism is described briefly in Chapter 5.

'I j I,

Version 71, May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

2 CM-5 C * User k Guide

Chapter 2

Developing a C* Program

A C* program can consist of:

· standard serial C code

* C* code; see Section 2.1

* header files; see Section 2.2

* calls to the CM timing utility; see Section 2.3

* calls to CM library functions; see Section 2.4

* calls to CM Fortran subroutines; see Section 2.5

In addition, C* programs can be called from CM Fortran programs. See Sec-
tion 2.6.

2.1 C* .cs Files

All C* code must appear in files with the suffix . cs. C* code consists of any
of the extensions that C* adds to Standard C; see the C* Programming Guide for
a discussion of these extensions. Standard C code can appear in either . c or . cs
files; putting it in . c files speeds up compilation, as discussed in Section 3.2.

2.1.1 C* Keywords

C* adds these new keywords to Standard C:

Version 7.1, May 1993

Copyright 0 1990-1993 Thinking Machines Corporation 3

4 CM-S C* User's Guide8-------

allocatedetailed shape
allocateshape
bool

boolsizeof

current

dimof

everywhere
overload

pcoord

physical

positionsof

rankof

shape

shapeof

where

with

C* code must not use these words, except as prescribed in the definition of the
language.

2.1.2 Reserved Identifiers

Identifiers beginning with c are reserved for use by the Connection Machine
system software. Do not create identifiers beginning with cs in your programs.

2.2 Header Files

C* substitutes its own header files for some Standard C header files. To find out
the location of these and other C* header files at your site, issue this command:

% cs -cm5 -dirs

The files are in the include directory listed in response to this command; see Sec-
tion 3.4.4 for more information. Appendix A contains the man pages for some
of these files.

C* accepts other Standard C libraries and associated header files, as long as they
are ANSI-compliant. Exceptions include:

* header files that use C* keywords; see Section 2.2.4

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

4 CM-5 C * User $ Guide

Chapter 2.Develoing - a ---- Program

* header files containing syntax that is not accepted by the C* compiler (for
example, <a. out. h>)

* header files that depend on internal compiler support not provided by C*
(for example, <alloc.h>)

In addition to its versions of some Standard C header files, C* includes these
header files:

* <csconmm.h>, which is the header file for the communication functions
described in Part III of the C* Programming Guide.

* <csshape.h>, which is the header file for a group of routines used in
obtaining information about shape layout, as described in the C* Pro-
gramming Guide.

* <cstable .h>, which provides routines used in C*'s table lookup utility,
also described in the C* Programming Guide.

* <csfo rt. h>, which you use when calling CM Fortran routines from a C*
program. See Section 2.5.

2.2.1 The <math.h> File

The C* version of <math.h> declares all the functions in the UNIX serial math
library and extends all ANSI serial functions with parallel overloadings. No spe-
cial library is required to use these functions.

2.2.2 The <stdlib.h> File

The file <stdlib.h> contains scalar and parallel declarations of the function
abs, rand, and srand; the parallel versions of rand and srand are named
prand and psrand. The file also contains the declarations of palloc, pfree,
and deallocateshape, which are described in the C* Programming Guide.
No special library is required to use these functions.

Note that prand returns a parallel variable in which each element is sampled
independently from the uniform distribution.

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter 2 Deloping a C Program 5

6 CM-S-C*-Use'-- Guid

2.2.3 The <string.h> File

The file <string.h> contains parallel declarations of the functions memcpy,
memmove, memcmp, and memset. In addition, it contains declarations of boolean
versions of these functions, called boolcpy, boolmove, boolcmp, and
boolset. Use the boolean versions to maintain source compatibility with
CM-200 C*.

The boolean versions take pointers to bools for arguments and return pointers
to bools (except for boolcmp). If you are dealing with arguments that are not
bools, you must cast them to be pointers to bools. Also, note that the size argu-
ment for memcpy and related functions is in terms of chars, while the size
argument for the boolean versions is in terms of bools.

For example, in this code fragment, both memcpy and boolcpy copy source
to dest:

#include <string.h>

/* ... */
int:current dest[2], source[2];

memcpy(dest, source, 2*sizeof(int:current)); I *
boolcpy((bool:current *)dest,

(bool:current *)source, 2*boolsizeof(int:current));

2.2.4 Header Files and C* Keywords

A difficulty can occur when you want to include a standard header file that also
makes use of a C* keyword. For example, the X Wrmdow System header file
<X11/Xlib.h> uses the C* keyword current as the name of a structure mem-

ber. Including this file would result in a syntax error. In such a situation, you can
do this:

#define current Current

#include <Xll/Xlib.h>

#undef current

This redefines current to be current while <X11/xlib.h> is being in-
cluded, then undefines it. Of course, if you subsequently want to use the
<x11/xlib.h> structure member in your program, you must refer to it as
Current.

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

CM-5 C User S Guide6

Chaptr- 2 Dvonarram-7

2.3 Timing a Program

CMOST provides a timing utility that you can use in a C* program to determine
how much time any part of a program takes to execute on the nodes.

The timing utility has these features:

* A timer calculates total time the processing nodes were active, with micro-
second precision.

* Multiple timers can be active at the same time.

* Timers can be nested. This allows you, for example, to start one timer that
will time the entire program, while using other timers to determine how
different parts of the program contribute to the overall time.

You can have up to 64 timers runmning in a program. An individual timer is refer-
enced by an unsigned integer (from 0 to 63 inclusive) that is used as an argument
to the timing instructions. Instructions with the same number as an argument
affect only the timer with that number.

To start timer 0, for example, put a call to the CM_timer_start routine in your
program, using 0 as an argument:

CM timer start(0);

You can subsequently stop timer 0 by calling the CM timerstop routine later

in your program:

CM_timerstop (0);

This function stops the timer and updates the values for total elapsed time and
total node idle time being held by the timer. You can subsequently call
CMtimer_start again to restart timer 0; the timing starts at the values cur-
rently held in the timer. This is useful for measuring how much time is spent in
a frequently called subroutine. The timer keeps track of the number of times it
has been restarted.

You can start or stop other timers while timer 0 is running; each timer runs inde-
pendently.

To get the results from timer 0, call this routine after you have called
C_ timerstop:

CM_timer_print(0);

Version 7.Z, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chapter Z. Developing a C Program 7

8 CM-S U.....Gi -de-----

CM timerprint prints information like this to your standard output:

Starts: 1
CM Elapsed time: 27.7166 seconds

CM busy time: 23.1833 seconds

These routines return specific information from the timer for use in a program:

· CMtimerread_starts returns an integer that represents the number

of times the specified timer has been started.

* CM_timerreadelapsed returns a double-precision value that repre-

sents the total elapsed time (in seconds) for the specified timer. "Elapsed
time" refers to process time, not wall-clock time.

* CM timer read cm idle returns a double-precision value that repre-

sents the total CM idle time (in seconds) for the specified timer.

CM timer read cm busy returns a double-precision value that repre-
sents the total time (in seconds) the CM was busy for the specified timer.

CM busy time is the total elapsed time minus the CM idle time.

CM timer read run state returns 1 if and only if the specified timer
is running. Otherwise, the routine returns 0.

If you use any of these CMtimerread_ xx routines, include the file <cm/
timers. h>.

In addition, cm _timer_set_starts takes a timer number and an integer as

arguments. It sets the number of starts for the specified timer to the specified

value. This is useful if you want to write a function that can query a running timer
without changing the number of starts. Not changing the number of starts is

important if you want to know how many times a large chunk of code was called,

but you also want to get sub-timings within that block.

To clear the values maintained by a timer, call caMtimerclear. For example,

to clear the value maintained by timer 0, put this call in your program:

CM timer clear(0);

This zeroes the total elapsed time, the total node idle time, and the number of
starts for this timer.

NOTE: For compatibility with CM-200 C*, CM-5 C* also provides versions of the

timing routines that begin with Cac instead of Ca. If your program contains the
cmc versions of the routines, make sure you include the file <cstimer .h>.

Version 7.1, May 1993
Copyright Q 1990-1993 Thinking Machines Corporation

CM-5 C * User k Guide8

Chapter 2. Developing a C* Program--

2.3.1 Hints on Using the Timing Utility

The elapsed time reported by a timer includes time when the process is swapped

out on the partition manager. The more processes that are running, the more dis-
torted this figure will be. Therefore, we recommend that you use a partition

manager that is as unloaded as possible.

If you can't guarantee that you will have exclusive use of the CM-5, try to run
the process several times; the minimum elapsed time reported will be the most
accurate.

In addition, we recommend that you avoid stopping a process that is being timed.

Note that the inclusion of calls to the timer functions can change the generated
code somewhat, and therefore itself affect performance.

Finally, note that if you are using Prism to analyze the performance of a program

that includes timer calls, Prism performance data will include the overhead
assigned to these calls; thus, the elapsed time reported by Prism will be some-

what greater than the elapsed time reported by the timing routines.

2.4 Calling CM Libraries

You can call routines from the standard CM libraries from within a C* program.
Specifically:

* Call routines from the CMXll library to display images on an X Window

System. See Section 2.4.1.

* Call routines from the CM/AVS library to create modules that you can use
in a distributed visualization application within the AVS visual program-
ming environment. See Section 2.4.2.

* Call routines from the CMFS library to perform standard I/O functions -
for example, reading data into the processing nodes from a scalable disk
array or other I/O device. See Section 2.4.3.

* Call routines from the CMMD library to do node-level message passing on
CM-Ss with vector units. See Section 2.4.4.

Version 7.1, May 1993
Copynrght © 1990-1993 Thinking Machines Corporation

Chpter Z Dveloping a C Program 9

1 0C M-- - - - - - - - - - C * U s e r ' s

Call routines from the Connection Machine Scientific Software Library
(CMSSL) to perform data parallel versions of standard mathematical oper-
ations such as matrix multiply and Fast Fourier Transform You currently
call the CM Fortran versions of CMSSL routines, as described in Section
2.5.

NOTE: These libraries are not available if you compile with the -cmsim option
to run on a Sun-4.

2.4.1 CMX11

You can make calls to the CMXll library from C*. This library provides routines
that allow the transfer of parallel data between the CM and any Xll terminal or
workstation. See the CMXII Reference Manual for information on the C*
interface.

2.4.2 CM/AVS

CM/AVS is an extension of the Advanced Visualization System (AVS) to the
CM-5. AVS provides a graphic programming environment in which you can build
a distributed visualization application. CM/AVS enables such an application to
operate on data that is distributed on CM-5 nodes and to inter rate with data
from other sources.

You can write your own modules for CM/AVS in C*. You can then combine these
modules with standard CM/AVS and AVS modules to create your visualization
application. See the CM/AVS User's Guide for information on how to call the
CM/AVS routines in a C* program.

2.4.3 1/0

CM-5 C* provides synchronous parallel /O support to the DataVault and scalable
disk array via an interface to the CMFS functions; /O to other devices is not cur-
rently supported The interface is the same for CM-5s with and without vector
units. For complete information on these functions, see the documentation for the
CM-5's I/0 system..

fil 'l

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

10 CM-5 C * User 5 Guide

Chapter 2. Developing a C~ Prram --

Other interfaces for /0O may exist in the future.

The CMFS 1/0 library is not available if you compile with the -cmsim option to
run on a Sun-4.

Note these points in using the current interface:

* Do not include <cm/paris .h> or <cm/cmtypes .h>.

* You must include <cm/cmf .h>.

* Linkwith-lcmscs -lcmI s cm, inthat order.

* These calls are specific to the CM-2 and are not supported in the CM-5
CMFS library:

CMFS cm tos tandar dbyteorder

CMFS convert vax to ieee float
CMFS convert ieee to vax float

CMFS_partial_read_file_always

CMFS_partial_write_file_always

CMFStransposealways
CMFS_transpose_recor dalways
CMFSfile_geometry
CMFS_twuffle_to_serial_order_always_lL

CMFS_twuffle_from_serial_order_always_l L

* There are C*-specific versions of CPs_read_f i 1 e_always,
CMFS_read_f ile, CFS_write_f ile_always, and
CMFS_write_file. The declarations (from <cm/cmfs.h>) are:

overload CMFSreadfile, CMFS_read filealways;
overload CMFS write_file, CMFSwritefile_always;

int CMFS read file (int fd, void:void *dest,

int bytesper_position);

int CMFS_read_file_always (int fd, void:void *dest,

int bytes_per_position);

int CMFS write file (int fd, void:void *dest,

int bytes_per_position);

int CMFS write filealways (int fd, void:void *dest,
int bytes_per_position);

These interfaces provide basic compatibility with CM-200 C* code that
calls CMFS.

Version 7.1, May 1993

Copyright © 1990-1993 Thinling Machines Corporation

Chapter Z. Developing a C* Program 11

(M9L r* Mar ' r-,iMA

The functions are called with pointers to parallel variables. A pointer to
a parallel variable of any type may be used. The specified length may be
any number of bytes, but performance is significantly diminished when
the length is not a multiple of four bytes. See below for a further discus-
sion of /O performance.

• The lengths passed to and returned by these functions are always in bytes.
For the C* interface, they indicate the number of bytes read or written in
each position of the parallel variable. Note that on the CM-2/200 the
CMFS_read_file and CUPS_write_file functions take bit lengths,
and that in either case boolsizeof should be used to specify the length;
this will make the program portable.

* There is currently no difference between the regular and the "always" ver-
sions of these functions. This is a temporary restriction. Users should only
use the "always" versions until this restriction is lifted.

Streaming and buffered IO are not supported

* You can use standard UNIX YO routines to do serial I/O on CMFS files if
the CMFS file system is NFS-mounted. See the CM-5 I/O documentation
for more information.

* The total size of a file on a CMFS file system (that is, on the DataVault)
will always be rounded up to be a multiple of 512 bytes.

* /O performance may be significantly diminished if any of the following
is true:

* The size specified to the CMFS functions is not a multiple of 4
bytes.

* The total amount of data being read or written is not a multiple of
16 bytes on the SDA, or 512 bytes on the DataVault

* The file position is not on a 4-byte boundary.

* The parallel data passed to the CMFS function is an address that is
not on a 4-byte boundary (for example, when the pointer points to
a member of a parallel structure).

* The CMfS iseek routine when called from C* seeks into a file the num-
ber of bytes you specify multiplied by the number of positions in the
current shape. The routine CFS_serial_lseek seeks an absolute num-
ber of bytes into a file.

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

1)

Chape - Develop--in-aC*Poga

2.4.4 CMMD

You can call routines in the CMMD communication library from C*, as of CMMD
Version 3.0. For complete information, see the CMMD User i Guide and CMMD
Reference Manual

To call CMMD routines, you must compile your C* program with the -node and
-cmmd_root options; see Section 3.4.8.

2.5 Calling CM Fortran

You can call CM Fortran subroutines from within a C* program. This section
describes how. See Section 3.6 for a discussion of how to link in the CM Fortran
program and other required files.

2.5.1 Overview

To call a CM Fortran subroutine, do the following:

* Include the file <csfort.h>.

* The name of the C* main routine must be MaIN_().

* Use the function CMCCALLFORTRAN to call one or more CM Fortran
subroutines. You must convert the subroutine name to lowercase and add
an underscore to the end of it.

* To pass a parallel variable to a subroutine, create a scalar variable of type
CMC descriptor t. Call the function MC _wrappvar, with a pointer
to the parallel variable as an argument, and assign the result to the scalar
variable you created. Pass this scalar variable to the CM Fortran subrou-
tine when you call it via CMC_CALL_FORTRAN.

* Pass scalar variables to a CM Fortran subroutine by reference.

* After you are finished with a descriptor, free it by calling
CMC_free_desc with the scalar variable as an argument.

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

Chapiter Z. Developing a C* Program 13

14 - CM-SC*-User's-Guide

2.5.2 In Detail

Include File

As mentioned in the overview, you must include the file <csfort.h> if your
program includes a call to a CM Fortran subroutine.

Calling the Subroutine

To call a CM Fortran subroutine, use this syntax:

ICMC_CALL_FORTRAN (subroutine_ (args), ...);

where:

subroutine is the name of the subroutine. It must be in lowercase
(even if the original subroutine name is in uppercase), and
you must add an underscore to the end of the subroutine
name.

arare the subroutine are thesubroutine'sarguments, if any. aI

To call multiple subroutines, separate them with commas within the argument
list. For example:

CMC_CALL_FORTRAN (subroutinel (), subroutine2_ ());

The subroutine is not constrained by the current shape or the context as estab-
lished by the C* program. When the call to CRC_CAL_FORTRAN returns,
however, both the shape and the context are what they were before the function
was called.

What Kinds of Variables Can You Pass?

You can pass both parallel and scalar variables as arguments to a CM Fortran
subroutine. The parallel variables you pass can be of any shape. The variables
can be of these standard types:

signed int

signed long int
float
double
long double

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

CM-5 C User $ Guide14

Chapter2.Deelop ing --a - ------- 15

In addition, <csfort. h> provides typedefs for two new types: CC_complex
and cMc_double_complex. The typedefs are defined as follows:

typedef struct{float real, imag;) CMC_complex;

typedef struct(double real, imag;} CMC_double_complex;

Use these types to pass variables that can be treated as complex numbers by CM
Fortran.

Passing Parallel Variables

A two-step process is required to pass a C* parallel variable to a CM Fortran
subroutine.

First, declare a scalar variable of type CmC_descriptort. For example:

CMC_descriptor_t desc_a;

Next, make this variable a descriptor for the parallel variable by calling the func-
tion QC wrappvar, with a pointer to the parallel variable as its argument, and
assigning the result to the scalar variable. For example, if pl is the parallel vari-
able you want to pass, call the cc wrap_pvar function as follows:

desc_a = CMC_wrappvar(&pl);

You can wrap a parallel variable of any shape.

You can then pass the descriptor to the CM Fortran subroutine. For example:

CMC_CALLFORTRAN(subroutine(desc_a));

The descriptor stores the address of the parallel variable, and the parallel variable
is passed by reference in this way. The CM Fortran subroutine can then operate
on the parallel variable referenced by the descriptor.

C* code can operate on the parallel variable even after it has been wrapped.

You can reuse a descriptor in a program, but first you must free it; see below.

One restriction on passing parallel variables: You cannot pass a member of a par-
allel structure or an element of a parallel array to CM Fortran. Only simple
parallel variables can be passed.

Version 7.1, May 1993

Copyright 0 1990-1993 Thinling Machines Corporation

Chapter 2 Developing a C Prgrain 15

16 CM-S C*-User-s-G--de

Passing Scalar Variables

Pass scalar variables to a CM Fortran subroutine by reference. For example:

int sl;

CMC CALL FORTRAN(subroutine (&sl));

Freeing the Descriptors

When you are through using a descriptor, free it by calling CC_free_desc
with the descriptor as the only argument. For example:

CMC freedesc(desca);

You can free a descriptor to a parallel variable of any shape.

An Example

Belowisa C* program that callsa CM Fortransubrouine.

#include <stdio.h>

#include <csfort.h>

shape [16384]S;

CMC_descriptor_t desca;
int sl;

int:S pl;

MAIN_()

{

with (S) {

Si = 1;

p = 1;

desc a = CMC_wrap_pvar(&pl);

CMC_CALL_FORTRAN(fortran op_(desc_a,&s1));

CMCfreedesc(desc_a);
printf("Result for last position is %d\n",

[16383]pl);

}

} , ' 4,~~~~~~~~~(1

Version 7.1, May 1993
Copyright 0 1990-1993 Thiiddng Machines Corporation

16 CM-5 C User 2s Guide

Chapte 2. Deeopn a- C*- Program--17------

And here is the simple CM Fortran subroutine it calls:

subroutine fortran_op(a,s)

integer a(16384)

integer s

a = a + s

return

end

In the future, we hope to provide a more transparent interface to CM Fortran. To
minimize recoding when this interface is available, we recommend that you call
the subroutine as if you were calling it directly, then use a stub routine to provide
the correct syntax to make it work now. The example in Section 2.6.5 shows how
to do this.

2.6 Writing Functions that Are Callable from CM Fortran

The previous section described how to call a CM Fortran routine from C*; this
section describes how to write a CM-5 C* routine that can be called from a CM
Fortran program. See Section 3.7 for information on compiling the CM Fortran
program.

Functions callable from CM Fortran must include the header file <csf ort .h>.

2.6.1 Names

Name the function according to Fortran conventions. Specifically:

* The name must end with an underscore (_).

* Any alphabetic characters in the name must be lowercase.

In the CM Fortran program that calls the function, the alphabetic characters may
be either upper- or lowercase (since Fortran is not case-sensitive). The trailing
underscore must be omitted.

Version 7.1, May 1993

Copyright 0 1990-1993 Thinking Machines Corporation

Chqpirer 2. Developing a C Program 17

2.6.2 Shapes

A C* shape and a CM Fortran "geometry" (that is, the shape and layout of a CM
array) are not exactly the same, since C* shapes include context information as
well as information on extents, rank order, and layout Multiple shapes can share
the same geometry.

Use the function CC allocate _shape_from_desc to dynamically allocate
a shape in a C* function to be called from CM Fortran. It takes as an argument
a descriptor for a CM array; see the next section. It returns a shape whose geome-
try is the same as that of the CM array, and whose context initially selects all
elements of the geometry.

You must free this shape via the deallocateshape routine before the C*
function returns.

2.6.3 Parallel Arguments

Parallel variables are the equivalent of CM arrays in CM Fortran. The C* func-
tion must declare CM arrays incoming from the CM Fortran program with the
type CMC_descriptor_t; this is a descriptor for the CM array. The C* function
then turns the descriptors into pointers using this function:

void:void *CMC_unwrap_pvar(CMC_descriptor_t, shape);

(This is the opposite of the CC_wrap_pvar function described in Section
2.5.2.) This function returns a pointer to a parallel variable, given an array des-
criptor and a shape. The geometry of the array must match the geometry of the
shape, or a run-time error is signaled. A function to check that the geometries
match is:

bool CMC_same_geometry(CMC_descriptor_t, shape);

Typically, called functions will create a single shape per geometry, but this inter-
face allows otherwise for flexibility.

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

1R CM-5 C U ver t Guide

Chapter 2. Developing a C* Program-19

2.6.4 Scalar Arguments

All variables are passed by reference in CM Fortran, so the C* function must
receive pointers to each of its scalar arguments. The data-type correspondence
between CM Fortran and C* is shown in Table 1.

Table 1. Data type correspondence between CM Fortran and C*.

CM Fortran C*

REAL float

DOUBLE PRECISION double

COMPLEX CMC_complex_t

DOUBLE COMPLEX CMCdouble_complext

CHARACTER char *

Character arguments are not guaranteed to be null-terminated, as C often
expects. The lengths of all character arguments are appended to the end of the
argument list (these lengths are passed by value, not by reference).

LOGICAL, INTEGER, and DOUBLE PRECISION values are returned by value just
as in CM Fortran. CM Fortran turns functions that return complex values into
subroutines that pass a pointer to a place to write the result. Functions that return
character values are turned into calls whose first argument points to a character
variable in which to place the result, and whose second argument is the length
(passed by value).

This is a CM Fortran program that passes scalar values to a C* program:

LOGICAL 1

INTEGER i

REAL r

DOUBLE PRECISION d

COMPLEX c

DOUBLE COMPLEX z

CHARACTER*5 ch

1 = .TRUE.

i = 2

r =3.0
d = 4.0

c = (5.0,-5.0)

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

Chapter 2. Developing a C Program 19

CM-5 C* User s Guide

z = (6.0,-6.0)

ch = "abcde"

PRINT *,"Main Program (CMF)"

PRINT *,'1 - ',1

PRINT *,'i = ',i

PRINT *,'r - ',r

PRINT *,'d - ',d

PRINT *,'Ic ',c

PRINT *,'z - ',z

PRINT *,'ch - ,ch,' n

CALL CMF2C(l,i,r,d,c,z,ch)

END

And here is a C* program that it calls. (Note that there is nothing parallel about
this program; it merely uses the C* header file.)

#include <stdio.h>

#include <csfort.h>

void cmf2c_(lp, ip, rp, dp, cp, zp, chp, chl) /* fn name

lowercased & underscore appended */
int *lp;

int *ip;

float *rp;

double *dp;

CMC_complex_t *cp;

CMC_double_complex_t *zp;

char *chp;

int chl;

{

int i;

float r;

double d;

/* all args are pointers */

/* last arg for string length */

putchar('\n');

printf (#CMF2C (C)\n");

printf("l - %c\n", (*lp) ? 'T' : 'F');

printf (i - %d\n", *ip);
printf("r - %f\n", *rp);

printf("d - %f\n", *dp);

printf("c - (%f,%f)\n", cp->real, cp->imag);

printf("d - (%f,%f)\n", zp->real, zp->imag);
printf("s - %.*s\n", chl, chp);
putchar('\n');

/* modify some args */

*lp - !(*lp);
cp->zeal - -cp->real;

Version 7.1, May 1993
Copyright Q 1990-1993 Thinking Machins Corporation

20

.41)j I

Ba~lsll~llllP*l~4111~8I

Apr l

Chapter 2. Developing a C* Program 21

cp->imag - -cp->imag;
zp->real = -zp->real;

zp->imag - -zp->imag;

chp[0] - ' ';

2.6.5 An Example

Here is a simple CM Fortran program:

·REAL, ARRAY(7) :: J, I

REAL f
J I+ f
CALL CSTAR FUNCTION (J, I)

END

The C* program below both calls this CM Fortran program and contains the C*

function that the CM Fortran program in turn calls:

MAIN ()

{
shape [7]s;

float:s i, j;

float x;

int n;

with (s)

i = pcoord(0);

CMF ROUTINE(&j, &i, 1.0);

for(n-0; n < positionsof(s); n++) printf("%f ", [ni);

printf("\n");

for(n=0; n < positionsof(s); n++) printf("%f , [n]j);

printf ("\n");

/* Eventually, the following stub will automatically be gener-

ated by the compiler given the appropriate declaration of

CMF ROUTINE. For now, we need to write it by hand. */

#include <csfort.h>

CMF ROUTINE(jp, ip, f)
float:void *jp, *ip;

float f;

{

Version 7.1, May 1993
Copyright 1990-1993 Thinking Machines Corporation

gs�sssp888rs6aans�cpI�gI�gl$gg�

22 CM...~-S C*_B U_.ser : c-~'__ Guide////61- -- . .. : --- -------

CMCdescriptort jp_desc, ip desc;

jp_desc = CMC_wrappvar(jp);

ip_desc - CMC_wrap_pvar(ip);

CMC CALL FORTRAN(cmfroutine_(jp_ desc, ip_desc, &f));

CMC free desc(jp_desc);

CMCfree_desc(ip_desc);

/* This is an example of a C* function to be called by CMF.
Again, this is something that will eventually be handled

automatically. The above #include <csfort.h> is necessary for

this as well. */

void cstarfunction_ (CMCdescriptor_t ip_desc,
CMC_descriptort jp_desc)

{

shape s CMC_allocate_shape_from_desc(ip_ desc);

float:s *ip CMCunwrap_pvar(ip_desc, s);

float:s *jp - CMC_unwrap_pvar(jpdesc, s);

*ip -*ip;
*jp -*jp;

deallocateshape (&s);

I

I) :J

Version 7.1, May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

:1 j

4ij I

CM-5 C * User 's Guiik22

Chapter 3

Compiling a C* Program

This chapter describes how to compile and link a C* program. It is organized as

follows:

· Section 3.1 describes the compilation process.

* Section 3.2 describes basic options of the cs command.

* Section 3.3 describes cs options in common with the cc command.

* Section 3.4 discusses options more likely to be used by advanced
programmers.

* Section 3.5 discusses issues involved in linking CM-5 C* programs.

* Section 3.6 explains how to compile a C* program that calls a CM Fortran
subroutine.

* Section 3.7 discusses compiling a CM Fortran program that calls a C*
function.

* Section 3.8 discusses symbols for which cs provides #defines.

* Section 3.9 describes how to use make with C* programs.

3.1 The Compilation Process

To compile a C* program, use the cs command. Typically, the compiler is avail-
able on a CM-5 partition manager, or on a designated server on the network. If

Version 7.1, May 1993

Copyight © 1990-1993 Thinking Machines Corporation 23

24- --- ------- C M--*----
71J4"

the compiler is available on a server, it is generally a good idea to compile on it
rather than the partition manager, to avoid tying up the CM-5.

The cs command takes a C* source file (which must have a . cs suffix) and
produces an executable load module. The command also accepts .c source files,
.o output files, . s assembly files, . dp DPEAC files, and . a library files, but all
parallel code must be in a . cs file.

NOTE: . c files are by default passed to the Sun C compiler. This means that
ANSI C features are not allowed in . c files, but the code will be compiled more
efficiently and faster, since the C* compiler is not an efficient serial code
compiler.

3.2 Basic Options

The options accepted by cs include some that are specific to C* and the Connec-
tion Machine system, as well as versions of cc options. This section describes
commonly used options. All options are listed in Table 1. ci

TaIble 2. C* compiler options.

Meaning

Basic options:

Specify the version of the compiler to use.

Compile to run on a Sun-4.

Give information about cs without compiling.

Compile to run on a CM-5 without vector units.

Print the compiler version number.

Compile to run on a CM-5 with vector units.

Version 7.1, May 1993
Copyright C 1990-1993 Thing Machines Corporation

Option

-c2
-cm200

-cmsim

-h
-help

-sparc

-version

-vecunit

24 CM-5 C * User k Guide

Chapter 3. -Compiling-a-C*-Program-2

Option Meaning

Options in common with cc:

-c Compile only.

-Dname [=defl Define a symbol name to the preprocessor.

-g Produce additional symbol table information for
debugging with Prism, at the expense of slower
performance.

-Idir Search the specified directory for #include files.

-Ldir Add dir to the list of directories in the object library
search path.

-llib Link with the specified library.

-o output Change the name of the final output file to output.

-uname Undefine the C preprocessor symbol name.

Advanced options:

-cc compiler

-cmdebug

-cmmd root dir

-cmprofile

-dirs

-dryrun

-force

-keep ext

-node

-overload

Use the specified C compiler when compiling . c
files.

Compile for debugging (requires less execution
time than -g).

Use dir as the location of the CMMD library (for
use with -node.)

Compile for Prism performance analysis.

List the compiler's bin, lib, include, and
temp directories.

Show, but do not execute, compilation steps.

Force . c files through the C* compiler.

Keep the intermediate .s, . o, or . dp file.

Link to nm on a single node.

Display symbol names used by the compiler to call
overloaded functions.

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

Chapter 3. Compiling a C *Program 25

26

Option Meaning

-s Create an assembly source file for each input
source file. (No assembly or linking performed)

-temp directory Change the location of temporary files to directory.

-v Show the compilation and linking steps as they are
-verbose executed.

-warn Suppress warnings from the C* compiler.

-Wimplicit Display a warning when a function is called before
it is declared or defined.

-zcomp switch Pass option switch to comp, where
comp is cc, id, or cmld.

3.2.1 Choosing the Compiler: The -cm2, -cm200, -cmsim, l i
and -cm5 Options

If you have more than one CM model at your site, separate C* compilers may
be available for each machine. In any case, a version of the compiler is available
for creating programs to run on a Sun-4. You invoke this version of the compiler
via the -cmsim option; see below.

Your system administrator determines which version of the compiler you get by
default when you issue the cs command. You can override this either by setting
the environment variable CS_DEFAULT_MACINE to the machine you want
(cm2, cm200, cms, or cmsi), or by specifying the -cma, -ca200, -cm5, or
-cmsim option on the cs command line. Using the command-line option also
overrides the setting of the environment variable.

Use the -cmaim option to compile and link a version of your program that can
run on a Sun-4 SPARC workstation. The program can't do parallel I/O, graphics,
or call other non-C* library routines. Typically you would use this option to try
out a program on a smaller data set before running it on a Connection Machine.

You can determine the default compilation target by simply typing cs at your
UNIX prompt. If the resulting help message begins

C* driver [CM5 SPARC 7.1] 'i)

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

M-C r+ l rl G aw

Chapter 3. Compiling a C* Program 27

the target is a CM-5 without vector units. If it begins

C* driver [CM5 VECUNIT 7.1]

the target is a CM-5 with vector units.

See also the discussion of the -vu and -spare options in Section 3.2.4.

Note that if you specify -m2 or -cm200, you should consult the user's guide
for CM-200 C* for a discussion of supported compiler options.

3.2.2 Getting Help: The-help Option

Specify -help or -h to print a summary of available command-line options for
cs, without compiling.

3.2.3 Printing the Version Number: The -version Option

Specify the -version option to cause cs to print its version number before
compiling. If you do not specify a source file, cs simply prints the version num-
ber and exits.

3.2.4 Compiling for CM-5s with or without Vector Units:
The -vu, -vecunit, and -sparc Options

Specify the -vu or -vecunit option to compile your program to run on a CM-5
that has vector units.

Specify the -sparc option to compile your program to run on a CM-5 without
using the vector units.

The -vu, -vecunit, and -spare options imply -cms; if you specify any of
them, you do not have to specify -cm5 in addition.

If you specify -cm but omit one of these options, you get the default for your
site; typically, this is -vu.

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

Chapter 3. Compiling a C *Program 27

28 CM-S C* User's Guide

3.3 Options in Common with cc:
The -c, -D, -g, -, -I, -L, -o, and -U Options

The C* compiler allows you to specify the cc options -c, -D, -g, -I, -1, -L,
-o, and -U on the as command line. See Table 2 for a brief description of these
options; for more information, consult your documentation for cc.

Include the -g option if you want to debug the compiled program using Prism;
see Chapter 5. Using the -g option increases execution time considerably; use
the -cmdebug option instead if this matters. See Section 3.4.2.

3.4 Advanced Options

This section describes cs options that would typically be used by an advanced
programmer. All options are listed in Table 2, above.

3.4.1 Using Another C Compiler: The -c Option

The C* compiler works in conjunction with the standard C compiler available on
your Sun partition manager or compile server The use of C* with other C compil-
ers is not supported and can lead to incorrect results. However, you can use
another compiler if you want to, by including the -cc switch, followed by the
name of the compiler. For example, to use the Gnu C compiler, specify the -cc
option as in this example:

% as -cc gcc myfile.c

3.4.2 Debugging Your Program: The -cmdebug Option

Use the -c=debug option (instead of the standard -g option) to create symbol
table information for debugging your program. The -cmdebug option speeds up
execution time, at the expense of making debugging somewhat less precise. (For
example, you may not be able to set a breakpoint at every executable line of
code.)

Version 7.1, May 1993
Copyright O 1990-1993 Thinking Machines Corporation

28 CM-5 C* User ~ Guide

Chapter--- 3. Compilin a- C*----- Program-29

3.4.3 Obtaining Performance Data: The -cmprofile Option

Use the -cmprofile option if you want to run your program under Prism to
obtain performance data. See Chapter 5 for more information about Prism.

3.4.4 Displaying the bin, lib, include, and temp Directories:
The -dirs Option

Use the -dirs option to find out where the compiler searches for binaries,
libraries, include files, and temporary files. It produces output like this:

% cs -cm5 -dirs
C* driver [CM5 SPARC 7.1]

bin dir is /usr/cm5/cstar/7.1/bin/

libdir is /usr/cm5/cstar/7.1/lib/

includedir is /usr/cm5/cstar/7.1/include/

temp_dir is /usr/temp

The binary search path is:

1. the "bin_dir" directory specified in this message

2. your $PATH

3. /bin, /usr/bin, and /usr/local/bin

The library search path is:

1. any directories you specified via the -L option

2. the "lib_dir" directory specified in the -dirs message

3. directories you specify via $LD_LIBRARY_PATH

4. /lib, /usr/lib, and /usr/local/lib

The include search path is:

1. any directories you specified via the -I option

2. the "include_dir" directory specified in the -dirs message

3. /usr/include

Version 7.1, May 1993

Copyright 0 1990-1993 Thinking Machines Corporation

Chapter 3. Compiling a C Program 29

30 CM-5 C'lls8~8 Userasaa Guide--

3.4.5 Displaying Compilation Steps: The -dryrun Option

Specify -dxyrun to cause cs to show, but not carry out, the commands to be

executed in compiling and linking.

3.4.6 Putting .c Files through the C* Compiler: The -force Option

Specify -force to put . c files through the C* compiler Otherwise, such files

are passed unread to the C compiler. You might want to specify -force to take
advantage of the C* compiler's type checking of prototyped function
declarations.

3.4.7 Keeping an Intermediate File: The -keep Option

Use the -keep option to keep an intermediate file with the extension you specify.
Choices are:

* a, to keep the assembly-language source file

* o, to keep the object file

* dp, to keep the DPEAC assembly-language file; the file is named
file .pe .dp, wherefile is the name of the C* source code, without the . cs
extension

Using this option does not inhibit assembly or linking.

Note for users of CM-200 C*: -keep c is not allowed because CM-5 C* com-
piles directly to assembly code.

3.4.8 Using CMMD: The -node and -cmmdroot Options

To use the CMMD message-passing library from a C* program, you must link the
program with the -node option; this specifies that the program is to be linked
so that copies of it run separately on the individual nodes. This option is sup-
ported only if you also specify -vu to run on the vector units.

Version 7.1, May 1993
Copyright @ 1990-1993 Thinking Machines Corporation

30 C-5 C * User ~ Guide

Chapgg~8er 3. Comi ling a Cl Program 31

If the CMMD library has not been installed in the standard place at your site, use
the -cmmd root option, followed by a directory name, to specify its location.
Check with your system administrator for the correct location at your site. To
avoid having to specify this option every time you compile a node-level program,
set the environment variable caD_ ROOT to the correct pathname.

3.4.9 Displaying Names of Overloaded Functions:
The -overload Function

Use the -overload option to cause the compiler to display informational mes-
sages listing the symbol names it uses internally for overloaded functions; it
displays such a message once for every call to an overloaded function being com-
piled. Knowing these symbol names is necessary if you want to invoke such a
function directly using Prism.

3.4.10 Creating Assembly Source Files: The -S Option

Use the -s compiler option to create assembly source files for each input source
file. For example:

% cas -S foo.cs

produces the files foo. (for the program that rims on the partition manager)
and foo. pe. . (for the program that runs on the processors). See Section 3.5 for
more information

You cannot combine the -s option with either the -c option or the -o option.

3.4.11 Changing the Location of Temporary Files: The -temp Option

Use the -temp option, followed by the pathname of a directory, to cause tempo-
rary files used during C* compilation to be created in that directory. Issue the cs
command with the -dirs option to find out the standard location in which they
are created; see Section 3.4.4.

Version 7.1, May 1993
Copyright @ 1990-1993 Thiing Machines Corporation

Chapter 3. Compiling a C Program 31

32__ CM-S_._ C* Us Gd e. __ ' --- --I

3.4.12 Turning On Verbose Compilation: The -v or -verbose Option

Specify -verbose or -v to display informational messages as the compilation
proceeds. This can be useful if you want to see which part of the compilation
process produced an error message.

3.4.13 Turning Off Warnings: The -warn Option

Specify -warn to suppress warnings produced dring C* compilation.

3.4.14 Turning On Warnings about Undeclared Functions:
The -Wimplicit Option

Specify -Wimplicit to tell the compiler to print a warnming when you call a

function that has not previously been declared or defined.

3.4.15 Specifying Options for Other Components: The -Z Option

Use the -z option to specify a cc, cmid, id, dpas, or as option that cs does
not recognize. Use -Zld only when you specify the -cmJim option. Use -Zdpas
only when compiling for the vector units.

These options are passed directly to the specified component without any inter-
pretation by cs. Type -z, followed by the component name, followed by the
option. There is no space between -z and the component name; leave at least one
space between the component name and the option.

For example, specify

% cs -Zcc - myfile. c

to suppress cc warning messages.

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

32 CM-5 C * User ~ Guide

I I

Chapr3oplnsgaC*Prora3

3.5 Linking

This section discusses issues in linking C* programs.

3.5.1 Names of C* Run-Time Libraries

You need to be aware of the names of the C* run-time libraries only if you are
using a command other than cs to link - for example, when linking a C* pro-
gram that calls CM Fortran; see Section 3.6.

The names of the run-time libraries depend on the target of the compilation:

* If you specify -sparc, the libraries are libcs_cm5_sparc_sp . a and
libcs_cm5_sparcpn. a (for the nodes).

* If you specify -vu, the libraries are libcs_cm5_vu_sp. a and
libcs_cm5_vupn. a (for the nodes).

* If you specify -cmsim, the library is libcs_cm5_cmsim.a.

3.5.2 Intermediate Files

The C* compiler and the CM-5 linker, cmld, generate a single output file that
combines a scalar and a parallel executable program, As intermediate output,
however, the compiler generates separate scalar and parallel files. For example:

* With the -s option, the compiler generates two assembly files: for exam-
ple, myprogram.s and myprogram. pe. s.

* With the -c option, the compiler generates two object files: for example,
myprogram. o and myprogram. pe. o.

NOTE: The parallel files can have .pn extensions instead of .pe.

However, the linker generates only one executable file: for example, a.out.
There is no file a. out. pe corresponding to the parallel intermediate files.

If you work with intermediate files - explicitly linking object files, for instance
- you need only specify the scalar file. The corresponding parallel file is linked
automatically.

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Chaprter 3. Compiling a C *Program 33

t~- ~~,~u~kS~s~% r~l~· - -- -

If you wish to disable the automatic processing of the parallel (. pe) intermediate
file when the corresponding scalar file is specified, set the environment variable
CS_AUTOPEFILES to o. Any nonzero value for this variable leaves the feature
enabled.

In either case, recall that the separate intermediate files exist If you copy or
move intermediate files to another directory, be sure to move both the scalar and
the parallel file. See below for more information on creating libraries for .pe
files.

3.5.3 Creating Libraries

If you put object files in a library, you must remember to put the .pe object files
in a separate node library too; see the previous section. Note these points in creat-
ing the library for .pe files:

* The node library's name must begin with the same name as the library
containing the corresponding scalar object files, and it must end in _pe. a
(or .pn.a).

* It must be in the same directory as the one that contains the corresponding

scalar object files.

When linking, you then need only specify the library containing the scalar object
files.

For example, these commands create object files and store them in libraries in
your current working directory:

% C8 -c -cm5 foo.cs bar.cs
% ar q libmine.a foo.o bar.o; ranlib libmine.a

% ar q libmine_pe.a foo.pe.o bar.pe.o; \

ranlib libmine_pe.a

You can then link the programs in these libraries with another program by issuing

a command like this:

% cs -cm5 prog.cs libmine.a

NOTE: In the example shown above, the library containing the scalar object files

can also be called libmine_sp. a. C* will still find the corresponding pe or

pn library automatically.

Version 7.1, May 1993

Copyright Q 1990-1993 Thinking Machines Corporation

34 CM-5 C User is Guide

ChperN ; 3CmlgC*ra3

3.6 Compiling and Linking a C* Program
that Calls CM Fortran

If your program includes a call to a CM Fortran subroutine, as described in Chap-
ter 2, follow the instructions in this section.

1. Compile the C* program, using the -c option. For example:

% cs -cm5 -c testcs.cs

2. Compile the CM Fortran program, also using the -c option. For example:

% cmf -cm5 -c testfcm.fcm

NOTE: If you are using CM Fortran Version 2.1, you cannot compile with
the -noaxisorder or -nopadding option.

3.. Issue cmf again to link, using the applicable format:

· For CM-5s with vector units:

% cmf testcs.o testfcm.o -vu -Llib_dir \
-lcs_cm5_vu_sp

* For CM-Ss without vector units:

% cmf testcs.o testfcm.o -sparc -Llib_dir \
-lcs_cm5_sparc_sp

· For Sun-4s:

% cmf testcs.o testfcm.o -cmsim -Llib.dir \
-lcs_cm5_cmsim

where lib_dir is the library directory listed by the -dirs option to the cs
command.

If your programs are compiled with -g, -cmdebug, or -cmprofile, you
must also specify one of the following before -cs_cms_x

* -prism5 (when the C* program is compiled with -sparc)

* -prism5dp (when the C* program is compiled with -vu)

* -lprism_sim (when the C* program is compiled with -cmsim)

For example:

% cmf testcs.o testfcm.o -vu -Llib_ir -prismsdp \
-lcs_cm5 vu sp

Version 7.1, May 1993

Copyright 0 1990-1993 Thinking Machines Corporation

Chaptler 3. Compiling a C Program 35

36 CM-S C* User's Guideiraresl------

The result is an executable load module that you can execute as you nor-
mally would.

3.7 Compiling CM Fortran Programs that Call C*

If you are using Version 2.1 Beta or later of the CM Fortran compiler, you must
compile the CM Fortran program with the -padding option. Otherwise, com-
pile the CM Fortran as you normally would.

3.8 Symbols

The cs command predefines these preprocessor symbols to 1 where appropriate
in C* code:

unix
sun
spare

_ 5_SPARC

-E5 VECUNIT

CSTAR_
STDC

Any UNIX system
Sun only
Sun-4 only
CM-S only

CM-5 with SPARC processors only
CM-S with vector units
This is a C* compiler
This is an ANSI C compiler

3.9 Using make

The UNIX make utility can make object (.o) files from C*. .s files, just as it does
with . files. The only requirement is that this code must appear somewhere in
the makefile:

CS = cs

CSFLAGS = $ (CFLAGS)

.SUFFIXES: .cs
.CS.O:

$(CS) -c $(CSFLAGS) $<

Version 7.1, May 1993
Copyright e 1990-1993 hinking Machines Corporation

36 CM-5 C * User '3 Guide

Chapter 4

Executing a C* Program

Once a C* program has been compiled and linked, you can execute the output
file on a CM-5. This chapter gives an overview of how to execute a program on
a CM-5. Section 4.1 describes how to execute the program directly. Section 4.2
describes how to execute the program in batch mode. Section 4.3 describes how
to execute a C* program on a Sun-4.

Note that you can execute C* programs within Prism, the CM's programming
environment. See Chapter 5 for information on Prism.

NOTE: Your site may be using DJM (Distributed Job Manager), a batch system/
job manager. If so, see your local documeation for DiM to learn how to execute
programs on the CM.

4.1 Executing the Program Directly

To execute a program directly on a CM-5, you must gain access to it first. To do
this, you must know the name of one of its partition managers. You can find out
the names of partition managers from your system administrator, the system ad-
ministrator can also tell you if you have permission to use a particular partition
manager.

From your terminal or workstation on the network, you can gain access to the
partition manager via the UNIX command rlogin or rsh. For example, to log
in to the partition manager Mars, issue the command:

% rlogin mars

Version 7.1, May 1993
Copyright © 1990-1993 Thinding Machines Corporation 37

CM-S C* User X Guide

You can then execute your program on the partition just as you would any UNIX
command or program. For example:

% a.out

Use the rsh command to execute the program without logging in to the partition
manager. Simply specify the name of the partition manager, followed by the
name of the executable program, on the rsh command line. For example:

% rsh mars a.out

You are then returned to your local UNIX shell.

4.2 Obtaining Batch Access

You can use NQS, a standard batch system, to obtain batch access to the CM-5.
For complete information on NQS, see the manual NQSfor the CM-5.

In NQS, you submit your program as a request to a queue. The queue may be
associated with a partition, in which case the request is generally executed when
it reaches the head of the queue. Or, the queue could send the request to another
queue for execution.

NQS is configured differently at different sites. To find out what queues exist at
your site and when they are active, ask your system administrtor, or issue this
command:

% qstat -z

4.2.1 Submitting a Batch Request

Use the qsub command to submit a batch request for execution via a queue in
NQS. You can submit multiple programs as one batch request. There are two
ways of specifying the programs to be executed:

Put their names in a script file, and specify the name of the script file on
the qsub command line. For example, the file myprogram_script
could contain these names of executable C* programs:

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

3R

C a r4E ------n a * ror

myprograml
myprogram2
myprogram3

You can then submit these programs for execution by issuing this
command:

% qsub myprogramscript

Enter the names of the files from standard input. Put the names of the pro-
grams on separate lines, and type Ctrl-d at the end to signal that there is
no more input. For example:

% qsub
myprogram1

myprogram2

myprogram3

Ctrl-d

You can also issue other commands as part of the request.

4.2.2 Options for qsub

This section describes several of the most commonly used options for qsub. See

its on-line man page for a discussion of all its options.

Specifying a Queue

Use the -q option to specify the name of the queue to which the request is to be

submitted. If you omit this, the request is sent to the default queue (if one has
been set up).

Receiving Mail

Use the -mb option to specify that mail is to be sent to you when the request
begins execution. Use -me to have mail sent to you when the request ends
execution.

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

Chapto~r 4. Eecuting a C Program 39

40 CM-5 C* User s Guide

Setting the Priority

Use the -p option, followed by an integer from 0 through 63, to set a priority for
this request in its queue. 63 is the highest priority, and-0 is the lowest priority.
The priority determines the request's position in the queue. If you don't set a
priority, the request is assigned a default priority.

Specifying Output Files

Use the -o option, followed by a pathname, to specify the file to which output
of the batch request is to be sent. Use the -e option to specify the pathname for
the standard error output. If you omit these options, the output is sent to default
files based on an ID number assigned to the request by the batch system.

4.2.3 Other Commands

There are other commands you can use in working with NQS:

* Use the qdel command to delete a batch request from a queue.

* Use the qstat command to obtain information about batch requests in a
queue.

4.2.4 UNIX Batch Commands

The CM-5 also supports the standard UNIX batch commands at and batch. For
example:

% at 0815am Jan 24
primes
Ctrl-d

This causes the program primes to be executed at 8:15 a.m. on January 24th.

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

C---hapter4- Exec C*_Progra 4_ _- ----

4.3 Executing a C* Program on a Sun-4

If you compiled your program with the -camim option, you can run your pro-
gram on a Sun-4. You run the program just as you would any other program on
a Sun-4. Performance, of course, will be much worse than on a CM-5.

*

9

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

Chapter 4. Execstirg a C *Pgram 41

Chapter 5

Debugging a C* Program
I --- -- -- --- -- --- - , I -- -- -- -- --- -- -- -- =

Use Prism, the programming environment for the Connection Machine system,
to debug your C* program. You can also use Prism to develop and execute your
program. This chapter gives a brief overview of Prism. For complete informa-
tion, see the Prism User s Guide and Prism Reference Manual. In particular, note
that there may be some limitations in Prism's support of C*; for example, it may
not recognize all C* syntax in expressions.

NOTE: If you compiled your C* program to run on the nodes and use the CMMD
message-passing library, use pndbz to debug the program. For information on
using pndbx, see the CMMD User 's Guide and the pndbx release notes.

Note also that the use of other debuggers is not supported for CM-5 C*.

5.1 Compiling for Prism

To use Prism for debugging your C* program, compile the program with the -g
or -cmdebug option. To use it for performance analysis (see Section 5.7), com-
pile with the -cmprof ile option.

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation 43

44CM-SC*---Uer--sGide - -

5.2 Starting Prism

Prism has two modes:

· Graphical Prism operates on terminals or workstations running the X Win-
dow System.

I Commands-only Prism lets you operate on any terminal, but without the
graphical interface.

5.2.1 Graphical Prism

~~_~~__ _1111_ ~______~_ ____ _____ --- ,,, _ _I--_-
Beiore starung rnsm, make sure your uDISPAY environment varnaDe is set ior
the terminal or workstation from which you are running X. For example, if your
workstation is named Valhalla, you can issue this command (if you are running
the C shell):

! setenv DISPLAY valhalla:O

To start Prism, issue the command prism at your UNIX prompt. To load an
executable program automatically into Prism, specify its name on the Prism
command line. For example:

% prism primes.x

This displays the main Prism window, as shown in Figure 1.

5.2.2 Commands-Only Prism

To start commands-only Prism, issue the prism command with the -c option:

% prism -C

After an introductory message, you receive this prompt:

(prism)

You can issue any Prism command at the prompt The rest of this chapter focuses
on graphical Prism; however, all of the functionality of graphical Prism is avail-
able by issuing commands from commands-only Prism, except for features that
require graphics.

Version 7.1, May 1993
Copyright 1990-1993 Thinking Machines Corporation

44 CM-5 C User is Guide

ChapterS. ebugin a__ C Poa

5.3 Using Prism

Figure 1 shows the main Prism window, with a source file loaded.

menu
bar
status
region

line-number
region -

9

command
window -

Figure 1. The main Prism window.

Clicking on items in the menu bar at the top of the Prism window displays pull-

down menus that provide access to most of Prism's functionality.

You can add frequently used menu items and commands to the tear-off region,

below the menu bar, to make them more accessible. Clicking on a button in the

tear-off region is equivalent to selecting the menu item or issuing the command.

The status region displays the program's name and messages about the pro-

gram's status.

The source window displays the source code for the executable program. You

can scroll through the source code and display any of the source files used to

compile the program.

9

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

tear-off
-region

_ source
window

ED m @ dICm= . I*IcIM

File Execute Debug Performance Events Utilities Doc Hell

Lo3ad.. Ru FPl nt. Contnuel F ne ptl U Down [o

Status: not startProgram: primesx

Une Source File: prolsdeltestisuiteistariprlmes.cs
41 /
42 /# This function will use the Sieve of Eratosthenes to */
43 / find the prime numbers. That is. it will terate /
44 / through a1i numbers which are ndices to the one- #/45 / diensonal parallel char /
46 /s
47 void fndprnies(bool:current isprimep)
48 bool:current scandidate;
49 1nt miniumprime:
50
51 *iaprimep = FRLSE:
52
53 atcandldate (pcoord(O))> FIRST_PRIME) TRUE FALSE:
54
55 do
55 where (is_candldate) (
57 minnmumprime = <?s pcoord(0):

"58 where (Ipcoord(O) minlinuprime))
59 .lecandidte = FALSE:
60 Ctininumprime Ls._prtme_p TRUE:
61 3
62 while(I= is.candidte);
63 3
64
65 mnL n()
66 shae CMaMUMPRIMEJ s:
67
68 bool:s isprime:
69 int 1:
70
71 printF("Fnding primes...\n):
72
73 with(s)
74 find.npries(oreLs_p rXme):
75 forX=O: 1O4RMMLUMPRIME: 1-*)
76 lF(iL]sprime)
77 prXntf("The next prime nber 1s Xd. 1):
-Z

L

Chapter 5. Debugging a C* Program 45

46 CM-S C* User's Guide

The line-number region is associated with the source window. You can click to
the right of a line number in this region to set a breakpoint at that line.

The command window at the bottom of the main Prism window displays mes-
sages and output from Prism. You can also type commands in the command
window rather than use the graphical interface.

5.4 Loading and Executing Programs

As mentioned above, you can load an executable program when you start up
Prism. You can also load it after Prism has started.

Once the program is loaded, you can run it or step through it, and interrupt execu-
tion at any time. You can also attach to a runmning program or associate a core file
with a program.

5.5 Debugging

PI-;- ts V11 rrm Ion-Ano -loo·ne toancA_! l cnelLreak Zle. yoU ip-LuvLam JLUrUu rUUU5UZJJ r pla&UVJ.i bsuJ. a;

* Setting breakpoints and traces

* Displaying and moving through the call stack

* Examining the contents of memory and registers

It also contains an event table that provides a unified method for controlling the
execution of a program. For example, using the event table, you can specify that
execution is to stop at line 33, and Prism is to print out the values of parallel
variable x.

5.6 Visualizing Data

In debugging a C* program, it is often important to obtain a visual representation
of the values of a parallel variable's elements. In Prism, you can create visualiz-

Version 7.1, May 1993
Copyright 0 1990-1993 Thiking Machines Corporation

46 CM-5 C User 5 Guide

Casp Dbgn -a ------a4
ers to display these values graphically. Prism visualizers provide a variety of
representations, including:

Text, where the values are shown as numbers or characters.

* Colormap, where each value is mapped to a color, based on a range of
values and a color map you specify. (This representation is available only
on color workstations.)

* Dither, where groups of elements are assigned different numbers of black
and white pixels, depending on their values. This gives an impression of
gray shading on a black-and-white display.

Figure 2. A dither visualizer.

* Threshold, where each value is mapped to either black or white, based on
a cutoff value that you can specify.

* Surface, which renders the 3-dimensional contours of 2-dimensional data.

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

Chapter 5. Debulgging a C * Program 47

48 CM-S C* Usersralm~e~ Guide~B

Fgure 3. A surface visnalizer.

* Graph, which displays values as a graph, with the index of each element
plotted on the horizontal axis and its value on the vertical axis. A line con- 4
nects the points plotted on the graph.

If the data doesn't all fit in the display window, you can pan through it. You can

also increase the size of the fields being displayed; this gives the effect of zoom-
ing in on an area.

You can specify that the visualizer is to update whenever the program stops
execution. And you can take a snapshot of the visualizer, so that you can compare
it with later updates.

5.6.1 Visualizing Parallel Objects

When you visualize a pointer to a parallel object (for example, a parallel variable
or parallel structure), you obtain three pieces of information:

* the CM memory address of the object being pointed to

* the address that represents the object's shape

a memory stride that indicates how many bytes are between the starting
addresses of successive elements of the object on each physical processor

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

CM-5 C * User k Guide48

Chap$er S. Deuginga *Prgam4

Here; are examples from a command-line Prism session:

(prism) whatis p

parallel int *p;

(prism) print p

pp'foo'p = [addr=OxaO0000088;

(prism) whatis c

parallel struct foo *c;

(prism) print c

pp'foo'c = [addr=OxaOOOOOOO;

shape=Ox3c018;

shape=Ox3cO18;

NOTE: CM-5 C* lets you obtain the memory address and stride information via
functions in your program; this in turn lets you construct a pointer to a parallel
variable. See the C* Programming Guide for more information.

5.7 Analyzing a Program's Performance

Prism provides performance data essential for effectively analyzing and tuning
C* programs. The data includes:

* processing time on the partition manager

* processing time on the nodes

* time spent doing various forms of communication

The performance data is displayed as histogram bars and percentages for each
resource. For each resource, you can also obtain data on usage for each procedure
and each source line in the program. You can save the performance data in a file
and redisplay it at a later time.

In addition, a performance advisor provides information about and analysis of
the data Prism collects.

9

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

stride=4]

stride=8]

Chapier 5. Debugging a C* Program 49

_50

I

)

Appendix

Man Pages
_- =II-- --------

This appendix contains the text of man pages for ca and for certain C* header files. These
man pages are also available on-line.

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation 51

5L

)

53CM-SC*User'side - -

CS

C* compiler for the CM-5 Connection Machine system

SYNOPSIS

cs[option]...file...

DESCRIPTION

cs invokes the CM-5 C* compiler. File names ending in .cs are treated as C* source
fles; file names ending in .c are treated as C source files and are passed directly to the
cc compiler; file names ending in .o are treated as object files and are passed directly to
the linker, and file names ending in a are treated as object libraries and are passed
directly to the linker.

The resulting executable program can be run on a CM-5 Connection Machine system.
An option is also available to run the program on a Sun-4.

cs accepts a number of the options and filename endings that cc accepts, plus many
specific to cs.

OPTIONS

Options specific to cs

-cccmdname

-cmX

-cmdebug

Use cmdname, rather than cc, as the compiler to perform C com-
pilations.

Compile and link for CM model X. Accepted values of X are 2, 200,
and 5. The values 2 and 200 invoke the CM-200 C* compiler (if it's
installed); see the CM-200 cs man page for information about this
compiler. There is a site-specific default, which would typically be
5 for a CM-5 site.

Compile for debugging. The program will run faster when com-
piled with -cmdebug than when compiled with -g, but debugging
will be somewhat less precise.

Version 7.1, May 1993
Copyright 1990-1993 Thinking Machines Corporation

0

53 CM-5 C User ir Guide

-cmmd_root dir Use dir as the CMMD root directory, when compiling as a node-
level program. The environment variable CMD_ROOT can also be
used to specify this directory.

-cmprofile Produce performance analysis code. Performance data can then be
generated and viewed using prism.

-cmsim Compile and link to run on a Sun-4.

-dirs Print a message showing where the compiler searches for binaries,
libraries, include files, and temporary files.

-dryrun Show, but do not execute, all commands to be executed in compil-
ing and linking.

-force Force input files with the .c suffix to be passed through the C*
compiler rather than the cc compiler.

-help Print a summary of available command line switches without com-
piling.

-h Synonym for -help.

-keep ext Keep the intermediate file with the extension ext. Specify s to keep
the assembly-language source code. Specify o to keep the object
file. Specify dp to keep a DPEAC assembly source file (ending in
.pe.dp) for code that runs on vector units. Using this option does
not inhibit assembly or linlking.

-node Compile and link to run as a node-level program.

-overload For each call to an overloaded. function, print the actual symbol
name of the function called. This is useful for debugging.

-q Suppress progress reports normally produced by the compiler.

-sparc Compile and link to run on a CM-5 without vector units. This option
implies -cm.

-temp dir Change the location in which C* temporary files are created from
the standard temp directory to dir. See tmpnam(3).

-v Show the commands executed as compilation and linking proceeds.

-vecunit Compile and link to run on a CM-5 with vector units. This option
implies -cm.

Version 7.1, May 1993
Copyright 1990-1993 Thinking Machines Corporation

Appendix. Man Pages 54

M ,S r*a IHTo) r ui;

-verbose Synonym for -v.

-version Print the C* compiler version number before compiling.

-vu Synonym for -vecunit.

-warn Suppress warnings from the C* compilation phase.

-w Synonym for -warn.

-Wnimplicit Print warnings when you call a function that has not previously
been declared or defined.

-Zcomp switch Pass option switch to comp, where comp is cc, cmld, Id (if the
-cmsim option is specified), dpas, or as. For example, -Zcc -O
turns on the C compiler's optimizer.

Options in common with cc

-c Suppress the linking phase of the compilation and force an object
file to be produced even if only one program is compiled.

-Dname[=defl Define the symbol name to the preprocessor. If =def is not supplied
then name is defined with a value of 1.

-g Have the compiler produce additional symbol table information for
use specifically with prism. This slows execution considerably.

-Idir Seek #include files whose names do not begin with "/" in this
directory. The compiler looks for include files first in directories
named in -I options, then in the include directory listed by the -dirs
option, then in /usrrmclude.

-Ldir Add directory dir to the list of directories in the object library
search path.

-x' Look for library libx.a in the library search path. The libraries
specified via the -L option are searched first, followed by the
library directory listed by the -dirs option, then libraries specified
by the environment variable LD_LIBRARY_PATH, if set. Finally,
Id tries the directories /lib, /usr/lib, and iusr/local/lib. Libraries are
searched in the order in which their names are encountered, so the
placement of a -1 is significant.

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

Air

Appei- Man Pgs.... 56

Name the final output file output. This option can also be used to
rename the output from the -c and -S options. It applies to parallel
.pe files as well as scalar files; see LINKING, below, for more
information on these files. If this option is used, the file aout will
be left undistrbed. If this option is not used, the output file is called
a-out, unless the -c or -S option is also specified.

-S Create assembler source files (ending in .S) as output.

-Uname Undefine the preprocessor symbol name.

PRE-DEFINED PREPROCESSOR SYMBOLS

The C* compiler provides the following default preprocessor symbols, each defined
as l.

unix
sun
spare
CM5

CMS_SPARC_
CM_ VECUNIT

CSTAR
__STDC_

Any UNI system
Sun only
Sun-4 only
CM-5 only

CM-5 with SPARC processors only
CM-S with vector units
This is a C* compiler
This is an ANSI compiler

UNKING

The C* compiler and the CM-5 linker, cmld (or Id if you specify the -cmsim option),

generate a single output file that combines a scalar executable program for the partition
manager and a parallel executable program for the nodes. As intermediate output, how-
ever, the compiler generates separate files for the partition manager and the nodes. For
example:

With the -S option, the compiler generates both parallel and scalar assembly files: for

example, myprograms and myprogrampe.s.

With the -c option, the compiler generates two object files: for example, myprogram.o
and myprogram.pe.o.

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

-o output

(

(

$, 11

Appendkx Man Pages 56

57 CM-S C*m Users Ge

However, the linker generates only one executable file: for example, aout. There is no
file aout.pe corresponding to the parallel intermediate files.

If you work with intermediate files - explicitly linking object files, for instance - you
need only specify the scalar file (for example, myprogram.o). The corresponding par-
allel file is linked automatically.

In any case, recall that the separate intermediate files exist. If you copy or move inter-
mediate files to another directory, be sure to move both the scalar and the parallel files.

If you put object files in a library, you must remember to put the .pe object files in a
library too. The library's name must begin with the same name as the library containing
the corresponding scalar object files, and it must end in _pe.a. It must be in the same
directory as the one that contains the corresponding scalar object files.

When linking, you then need only specify the library containing the scalar object files.

FILES

file.cs
file.o,file.pe.o
file.s, file.pe.s
file.a,file.pe.a
aout
include dir
bin_dir/cstar-compiler
binlcc
libdir/libcscm5_sparc_sp.a,
libdir/libcs_cmf_ sparc_pn.a,
lib dir/libcscmS_vu_sp.a,
lib.dir/ibcscmSYupn.a,
libdir/libcs_cm5_cmsim.a

input C* code
relocatable object files
assembler source files
object libraries
linked executable output
directory of C* include files
C* compiler executable
C compiler

C* libraries linked by default

where include_dir, bin_dir, and lib_dir are directories listed by the dirs option.

SEE ALSO

cc(l), cmld(l), prism(l)

C* Programming Guide, C* Release Notes, CM-5 C* User's Guide, CM-5 C* Perfor-
mance Guide, and Getting Started in C*.

Version 7.1, May .1993
Copyright © 1990-1993 Thinking Machines Corporation

9

57 CM-5 C * User s Guide

Appendix. Maan ages 58rsa~rssa~l t..

RESTRICTIONS

Bugs and restrictions are listed in the C* bug-update file, by default in /usrldoclcstar-

release.bugupdate.

Error messages are reported in a non-standard order. Rather than the messages appear-
ing in the order in which the error was encountered, they are grouped together by file,
and appear in the order in which the file was first seen. Thus, errors for included files
can show up after errors in the source file.

4

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

(

Appendmx Man Pages 58

59 CM-5 C* User's Guide

cscomm.h

C* communication functions

SYNTAX

include <cscommh>

SYNOPSIS

overload get, send, scan, global;

overload spread, copy_spread, multispread, copy_multispread,

reduce, copy_reduce;

overload rank, read_fromposition, write to_position,

make multicoord, makesend_address;

overload from_grid, fromgrid_dim, to_grid, to_grid_dim;

overload from torus, from torus dim, to torus, to torus dim;

overLoad read_from_pvar, write_topvar;

type:current get(CMC_sendaddr_t:current send_address,

type :void *sourcep, CMC_collision_mode_t collision_mode);

void get(void:current *destp, CMC_sendaddr_t:current

*sendaddressp, void:void *sourcep, CMC_collision_mode_t

collision_mode,int length);

type:current send(type:void *destp, CMC_sendaddr_t :current

send_address, type:current source, CMC_combiner t combiner,

bool:void *notifyp);

void:current *send (void:void *destp, CMCsendaddr_t:current

*sendaddressp, void:current *sourcep, int length,

bool:void *notifyp);

type:current scan(type:current source, int axis, CMC_combiner_t

combiner, CMC communication direction t direction,

CMC_segment_mode_t smode, bool:current *sbitp,

MCscan inclusiont inclusion);

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

MSSI MnPaesO -60

lype global (type:current source, CMC_combiner_t combiner);

type:current spread(type:current source, int axis, CMC_combiner_t

combiner);

type:current copy_spread(type:current *sourcep, int axis,

int coordinate);

type:current multispread(type:current source, unsigned int

axis mask,CMC combiner t combiner);

type:current. copy_multispread(type:current *sourcep,

unsigned int axis_mask,CMC_multicoord_t multi_coord);

void reduce(type:current *destp, type:current source, int axis,

CMCcombinert combiner, int tocoord);

void copy_reduce(type:current *destp, type:current source,

int axis,int tocoord, int from coord);

unsigned int:current rank(type:current source, int axis,

CMC communication direction t direction,

CMC_segment_mode_t smode, bool:current *sbitp); 4

type readfromposition(CMC_sendaddr_t send_address,

type :void *sourcep);

type write_to_position (CMC_sendaddr t send_address,

type:void *destp, bool source);

CMC multicoord t make multi coord(shape s, unsigned int

axis mask, CMCsendaddrt send address);

CMC multicoord t make multi coord(shape s, unsigned int

axis mask,int axest[);

CMC multicoord t make multi coord(shape s, unsigned int

axis mask,int axis, ...);

CMC sendaddr t:current make send address (shape s,

int:current axis, ...);

CMC sendaddr t:current make send address (shape s,

int:current axes[);

CMC sendaddr t make send address(shape s, int axis, ...);

CMC_sendaddr_t make_send_address(shape s, int axesE]);

Version 7.1, May 1993
Copyright 1990-1993 thinking Machines Corporation

60Appendiz Man Pages

61 CM-S C* User's Guide

type:current from_grid (type:current *sourcep, type:current value,

int distance, ...);

void from_grid(void:current *destp, void:current *sourcep,

void:current *valuep, int length, int distance, ...);

type:current from_grid_dim(type:current *sourcep, type:current value,

int axis, int distance);

void fromgriddim(void:current *destp, void:current *sourcep,

void:current *valuep, int length, int axis, int distance);

type to_grid (type:current *destp, type:current source, type:current

*valuep, int distance, ...);

void to_grid(void:current *destp, void:current *sourcep,

void:current *valuep, int length, int distance, ...);

void to_grid_dim(type:current *destp, type:current source,

type:current *valuep, int axis, int distance);

void to_grid dim(void:current *destp, void:current *sourcep,

void:current *valuep, int length, int axis, int distance);

type:current from_torus(type:current *sourcep, int distance, ...);

void from torus(void:current *destp, void:current *sourcep,

int length, int distance, ...);

type:current from_torus_dim(type:current *sourcep, int axis,

int distance);

void from torusdim(void:current *destp, void:current *sourcep,

int length, int axis, int distance);

void to_torus(type:current *destp, type:current source,

int distance, ...);

void to torus(void:current *destp, void:current *sourcep,

int length,int distance, ...);

void to_torus_dim(type:current *destp, type:current source,

int axis, int distance);

void to torus dim(void:current *destp, void:current *sourcep,

int length, int axis, int distance);

void read_frompvar (type *destp, type:current source);

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

CM-5 C * User Ir Guide61

ApBpedx Ma Ps

type:current write topvar (type *sourcep);

unsigned int:current enumerate(int axis,

CMC communication direction t direction,

CMCscan inclusion t inclusion, CMCsegmentmodet smode,.

bool:current *sbitp);

DESCRIPTION

The C* communication functions, which duplicate and supplement communication fea-
tures of the language, support grid communication, communication with computation,
and general communication. Commlmication fimunctions are overloaded to support arith-
metic, aggregate, and void types.

In the function prototypes listed above, there exists a function definition for the follow-
ing values of type: bool, signed char, signed short int, unsigned short int, signed int,
unsigned int, signed long int, unsigned long int, float, double, long double, and
void.

SEE ALSO

cs, CM-5 C* Users' Guide, C* Programming Guide

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Appendix. Man Pages 62

i

i

O'. i

i

I

i)= ~ ~ U ,l-J L- -I ur, IvuLu.

math.h

C* mathematical library

SYNTAX

#include <math.h>

SYNOPSIS

overload acos, asin, atan;

overload atan2;

overload cos, sin, tan;

overload cosh, sinh, tanh;

overload asinh, acosh, atanh;

overload exp, log, loglO, logb;

overload pow, ceil, sqrt, fabs, floor;

overload copysign, drem, finite, scalb; float:current

acos(float:current);

double:current acos(double: current);

float;:current asin(float:current);

doubl.e:current asin(double:current);

float;:current atan(float:current);

double:current atan(double:current);

float:current atan2(float:current f, float:current f2);

double:current atan2(double:current d, double:current d2);

float::current cos(float:current);

double:current cos(double:current);

Version 7.1, May 1993

Copyriglht 1990-1993 Thinking Machines Corporation

-113 traf C rl* T>-- <.,;

Appqgendi. M-ianPes 64e-

float:current sin(float:current);

double:current sin(double:current);

float:current tan(float:current);

double:current tan(double:current);

float:current cosh(float:current);

double:current cosh(double:current);

float:current sinh(float:current);

double:current sinh(double:current);

float:current tanh(float:current);

double:current tanh(double:current);

float:current acosh(float:current);

double:current acosh(double:current);

float:current asinh(float:current);

double:current asinh(double:current);

float:current atanh(float:current);

double:current atanh(double:current);

float:current exp(float:current);

double:current exp(double:current);

float:current log(float:current);

double:current log(double:current);

float:current logl (float:current);

double:current loglO(double:current);

float:current logb(float:current f);

double:current logb(double:current d);

float:current pow(float:current,float:current);

double:current pow(double:current,double:current);

Version 7.1, May 1993
Copyright C 1990-1993 Thinking Machines Corporation

64Appendiz Man Pages

65 1 -II !!g s C91M-S C U ' u

float:current ceil(float:current);

double:current ceil(double:current);

float:current sqrt(float:current f);

double:current sqrt(double:current d);

float:current fabs(float:current);

double:current fabs(double:current);

float:current floor(float:current);

double:current floor(double:current);

float:current copysign(float:current f, float:current f2);

double:current copysign(double:current d, double:current d2);

float:current drem(float:current f, float:current f2);

double:current drem(double:current d, double:current d2);

int:current finite(float:current f);

int:current finite(double:current d);

float:current scalb(float:current f, int:current i);

double:current scalb(double:current d, int:current i);

DESCRIPTION

The mathematical library under C* contains the entire serial C mathematical library,

along with parallel overloadings of many of the functions. In addition, only parallel
versions of the following functions, which have no scalar overloadings, are provided:

acosh, asinh, and atanh.

SEE ALSO

cs, CM-5 C* User Guide, C Programming Guide

Version 7.1, May 1993
Copyright @ 1990-1993 hinking Machines Corporation

65 CM-5 C * User g Guide

Appe Man Pages 66se-

RESTRICTIONS

Because the scalar and parallel versions of some routines are implemented using differ-
ent algorithms, results of routines given the same numerical input may be slightly
different in a serial context than in a parallel context.

4

I'

A;i

Version 7.1, May 1993

Copyright 0 1990-1993 Thinking Machines Corporation

Appendix Man Pages 66

67~~~~~~~~~~".'.~ ~'~~ C~~- *Ue' ud

stdarg.h

C* variable arguments

SYNTAX

#include <stdarg.h>

SYNOPSIS

void va_start(va_list ap, parmN)

type = va_arg(vaalist ap, type)

void vaend(valist ap);

DESCRIPTION

The macros va_start, va_arg, and vaend can be used to write functions that can oper-
ate a variable number of arguments.

The va_start macro must be called to initialize ap before use by va_arg and va_end.

The va_arg macro expands to an expression that has the type and value of the next
argument in the call. The value of ap is modified so that successive calls to va_arg will
continue to read arguments in the call.

The va_end macro facilitates a normal return from a function that calls the macros
va_start and va_arg to read a variable argument list.

EXAMPLE

#include <stdarg.h>

#define MAXARGS 32

void f(int n_params, ...)

{

int i, array [32]

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

0

S

67 CM-5 C User s Guide

l

AppendixeanPaes 68a~sa
va list ap ;
va_start(ap, nparams);
for (i = 0 ; i < MAXARGS; i++)

array[i] = vaarg(ap, int);
va end(ap) ;

SEE ALSO

ANSI C Programming Language Standard, C* Programming Guide
i

4

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Appendtx Man Pages 68

- CM-S C* User=s e --

stdlib.h

C* generic utilities

SYNTAX

#include <stdlib.h>

SYNOPSIS

int abs(int i);

int rand(void);
void srand(unsigned seed);

overload abs;

int:current abs(int:current i);

void psrand(unsigned seed);

int:current prand(void);

void deallocate_shape(shape *s);

void:void *palloc(shape s, int bsize);

void pfree(void:void *pvar);

DESCRIPTION

The C* generic utilities contain the parallel and scalar overloading of abs. The serial
function is documented on the abs man page; the parallel function behaves exactly like
the scalar function. Which abs function is called depends on whether a scalar or parallel
integer is passed as the argument.

The function psrand reseeds the random number generator in all processors, even those
that are not selected when the call occurs. Even though a scalar integer is passed to
psrand, every processor will be seeded for a different sequence of random numbers.
(Actually, it may be possible for two processors to have the same sequence, given a
Connection Machine configuration with many virtual processors.)

The function prand is the parallel version of the rand function.

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

CM-5 C User 's Guide69

SEE ALSO

cs, abs(3), rand(3)

C* Programming Guide

LIMITATIONS

Seed values of 0 and -1 are not accepted by psrand.

Version 7.1, May 1993
Copyright © 1990-1993 Thinking Machines Corporation

Annonpi Mnn Pnop 7f)

71C -SC Usr's uid ---

string.h

C* string handling functions

SYNTAX

#include <string.h>

SYNOPSIS

bool:current *boolcpy (bool:current *sl,

bool:current *s2, sizet n);

bool:current *boolmove (bool:current *sl,bool:current *s2,
size t n);

int:current boolcmp (const bool:current *sl, bool:current *s,

sizet n);

bool:current *boolset (bool:current *s, bool:current c,

sizet n);

void:curient *memcpy (void:current *sl, void:current *s2,

sizet n);

void:current *memmove (void:current *sl, void:current *s2,

size t n);

int:current memcmp (const void:current *sl, void:current *s,

size t n);

void:current *memset (void:current *s, int:current c, sizet n);

DESCRIPTION

The string handling functions under C* contain the serial C string handling functions
along with parallel overloadings of the functions.

Version 7.1, May 1993
Copyright O 1990-1993 Thinking Machines Corporation

71 CM-5 C User 's Guide

-appni an Pages 72

SEE ALSO

ANSI C Programming Language Standard

(

Version 7.1, May 1993
Copyright 1990-1993 Thinling Machines Corporation

4
Appendix Man Pages 72

Index

A
.a files, 24
abs, 5

as, 32
assembly files, 24

assembly language source file, keeping, 30
at command, 40

B

batch command, 40

batch request, submitting, 38
batch system, executing a C* program under,

38
bin directory, 29
binary search path, 29
boolcmp, 6
boolcpy, 6
boolmove, 6
boolset, 6
boolsizeof, 12

C
C compiler, using other than the default, 28

c files, 3, 24
putting through C* compilation, 30

C*, 1

cc, 24, 32
CM Fortran

calling C*, 17
calling from C*, 13

CM libraries, calling from C*, 9
CM/AVS, 10

<cm/cmfs .h>, 11
<cm/timers .h>, 8

cs__ symbol, 36
Cm5_SPARC symbol, 36
CMS VECUNIT_ symbol, 36

CMC_allocate_shape_from_desc, 18

CMC_complext, 19

CMC_descriptor_t, 18
CMC doublecomplee t, 19

CMC_same_geometry, 18

CMC_unwrapp_var, 18

CMFr_lseek, 12

CMFS_read_file, 12

CMFS_serial_lseek, 12

CMFS_write_file, 12

cmld, 32,33

CMMD, 13

CMMD_ROOT, 31

CMSSL, 10

CMX11, 10

compiler, default, 26
compiling

changing location of temporary files, 31
creating assembly source files, 31
displaying steps in, 30
getting help, 27
turning off warnings in, 32

compiling a C* program, 1, 23-24
cs, 1, 23, 53-58

-c option, 33
-cc option, 28
-cm2 option, 26
-cm2oo option, 26
-cms option, 26
-cmdebug option, 28, 43

-cmmd_root option, 13, 30
-cmprofile option, 29, 43
-cmsim option, 11, 26, 41
-dirs option, 29
-dryun option, 30
-force option, 30

-g option, 28, 43

-help option, 27
-keep option, 30
-node option, 13, 30

Version 7.1, May 1993

Copyright .1990-1993 Thinking Machines Corporation 73

74-C -S C'Use-s-G-- -

-overload option, 31
-s option, 31, 33
-sparc option 27
-temp option 31
-v option 32
-vecunit option 27
-verbose option, 32
-version option, 27
-vu option 27
-yarn option 32
-wimplicit option, 32
-z option 32
options in common with cc, 28
symbols defined for, 36

.cs files, 1, 3

CSAUTOPEFILES envionmnt variable,
34

CS DEFAULT MaCHm environment

variable, 26
<cscoum.h>, 5,59-62
<csfort.h>, 5, 13,17
<csshape.h>,5
<cstable.h>, 5
_CSTARI symbol, 36
<cstimer.h>, 8

current, used in <xll/Xlib.h>, 6

D

deallocate-shape, 5, 18
debugging, 2

-g or -cmdebug compiler option required
for, 28 -

developing C* programs, 1
dpas, 32
DPEAC files, 24

keeping, 30

E

executing C* programs, 2

F
functions, undeclared, displaying a wamring

from compiler, 32

H

header files,. 4
and C* keywords, 6

/0yo,10

linking for, 11
identifiers, reserved, 4
include directory, 29
include search path, 29
intermediat files, 33

K

ke
and header files, 6
list of C*, 3

L

lad, 32

lib directory, 29
hibraries, creating, 34
library search path, 29
linking, 33

M

make utility, 36
<math. h>, 5, 63-66
nemcmp, 6
memcpy,6

memmove, 6

memset, 6

0
.o files, 24
object file, keeping, 30
overloading, 31

P
palloc, 5
parallel objects, visualizing in Prism, 48

Version 7.1, May 1993
Copyright 0 1990-1993 Thinking Machines Corporation

.

4

i.

CM-5 C* User k Guide74

I'nx 5'

parallel variables, randomizing, 5
.pe files, 34
performance data, obtaining, 29
pfree, 5
pndbx, 43
pointers, scalar-to-parallel, constructing, 49

prand, 5
Prism

compiling for, 43
debugging in, 46
loading and executing programs in, 46

performance analysis in, 49

starting, 44
using, 45
visualizing data in, 46

psrand, 5

a
qdel, 40
qstat, 40
qsub, 38

options for, 39

R

rand, 5
See also prand

run-time libraries, names of, 33

S
.s files, 24

Version 7.1, May 1993

Copyright © 1990-1993 Thinking Machines Corporation

sparc symbol, 36
srand, 5

See also psrand
<stdarg. h>, 67-68
STDC symbol, 36
<stdlib.h>, 5, 69-70
<string.h>, 6, 71
sun, 36
Sun-4, executing a C* program on, 41

T
temporary files, location of, 29

timing utility, 7

U

unix symbol, 36

V

vector units, compiling to run on, 27

W
warnings, turning off, 32

X

<X11/Xlib.. h>, use of current in, 6

S

Index 75

